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ABSTRACT 

SYSTEM FOR DETECTION OF DEFECTS IN CABLES OF 
BRIDGE STRUCTURES 

by 
 

Emad Abdelsalam 
 
 

The University of Wisconsin – Milwaukee, 2013 
Under the Supervision of Dr. Al Ghorbanpoor 

 
 

 
Over the last 75 years, many cable-supported bridges have been built in America, Europe, 

Asia and other parts of the world. However, over the years these bridges have aged and 

been exposed to environmental conditions such as rain, snow, de-icing and harmful 

chemicals. These conditions cause various levels of deterioration in bridges, particularly 

corrosion.  Corrosion causes a loss of cross-section in the steel, adversely affecting the 

bridge’s capacity to carry its service loads, and can possibly cause bridge failures.  

Although many methods have been attempted to inspect these bridges, most have offered 

limited success. In the recent years, it has been shown that the Magnetic Flux Leakage 

(MFL) method, may offer the performance and practicality needed to inspect similar 

structures such as post-tensioned (P-T) tendons in segmental concrete bridges. This thesis 

offers a design for an NDE system based on the MFL method to inspect the entire length 

of the cables of cable-stayed bridges. The thesis also addresses the feasibility of 

integrating a secondary NDE method, the Magnetostrictive (MS) method, with the MFL 

system to provide a complete assessment of these bridges including the anchorage area. 

As a part of this study, prototype models of the MFL and MS systems were built. Past 

experimental results on a real P-T bridge cables have shown that the MFL is capable of 
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detecting as small as 1% of the cross sectional loss in bridge cables due to corrosion. 

Experiments carried out on a simulated anchorage area of 13 strands showed that the MS 

test is capable of detecting steel defects from single to several broken strands. 

Furthermore, based on simulation and experimental results, a more practical magnet 

design has been proposed to enhance the bridge cable inspection in future. 
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CHAPTER 1  

INTRODUCTION 
 

 

 

1.1   Motivation and Objectives 

In the last seventy five years, a large number of bridges have been built in the United 

States and around the world.  A majority of these bridge structures rely on stressed steel 

cables to carry all relevant loads from traffic, environmental effects such as wind and 

temperature, earthquake, and the weight of the structure. Over time, these bridges age and 

are exposed to environmental conditions such as rain, snow, de-icing and harmful 

chemicals. These conditions cause various levels of deterioration in the steel, particularly 

corrosion.  Corrosion causes a loss of cross-section in the steel, adversely affecting the 

bridge’s capacity to carry its service loads, and can possibly place the bridge’s 

performance and safety in a critical condition. Several cases of post-tensioned (P-T) cable 

corrosion in bridges have been reported throughout the world. For example, in the 

summer of 1999, Florida Department of Transportation (FDOT) discovered corrosion in 

multiple bridges including the Niles Channel Bridge in the Florida Keys [1]. Also, in 

2000, a fractured tendon and advanced stages of corrosion in the cable anchorage area 

were observed during a routine bridge inspection by FDOT at the Mid-bay Bridge near 

Destin [1]. Moreover, similar problems have been discovered at the Skyway Bridge in 

Tampa, FL [1]. Also, bridge collapses due to excessive corrosion have been reported in 
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the United States and in other parts of the world [2-7]. According to the above, there is a 

direct need for developing appropriate inspection methods to effectively detect corrosion 

in bridge cables and evaluate the structural integrity, performance and safety of such 

bridge structures.  

While different defects are formed in various structural members in bridge structures, the 

focus of this work is placed on the corrosion problems in primary steel cables of large 

bridges.  Such cables are normally enclosed in protective polyethylene or metallic ducts 

or wrapping materials to prevent exposure to moisture and outside environment.  As 

such, no visual evaluation is possible and there have been no practical commercial 

technologies that could be used to evaluate the condition of these bridge cables.   

There are many NDE methods such as X-ray, Ultrasound, Electrical Resistance gages, 

Time Domain Reflectometry, Linear Polarization, vibration techniques, Surface Potential 

Survey and Themography that may be applicable to inspection of bridge cables [8-10, 21-

29, 35-44]. Although these NDE methods may seem to be able to offer some evaluation 

capabilities for bridge cables, it has been shown that they are ineffective in the detection 

of corrosion in bridge cables [13-51]. The MFL concept has been successfully 

demonstrated to be effective in detecting defects such as loss of section and corrosion in 

external P-T ducts of concrete bridge structures [46- 51].   
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1.2   Proposed Research 

Based on the literature survey conducted as a part of this research, it was found that only 

MFL method can offer both the performance required to detect corrosion in bridge steel 

cables and the effectiveness for field applications [46-51]. Therefore, to address the 

problem of detecting corrosion in bridge cables, this work presents development and 

laboratory evaluation of an MFL system that is capable of inspecting and detecting steel 

corrosion in cable supported bridge structures. 

The basic principle behind the MFL technology is to apply a magnetic field near the 

surface of the steel cable and monitor the variation of the magnetic flux in the cable. The 

magnetic field should be strong enough to adequately penetrate through the steel cable. 

Since steel is a ferromagnetic material, magnetic flux will flow through the steel and will 

be confined within the steel structure. However, if there is a deficiency in the physical 

structure of the steel, such as a loss of cross section due to corrosion or fracture, the 

magnetic flux will leak to the surrounding environment.  This is usually referred to as 

“magnetic fringing” phenomenon. To take advantage of this phenomenon, magnetic 

sensors, like Hall-effect, are placed near the surface of the cable where an electrical 

signal can be observed and recorded in the form of voltage variations due to magnetic 

fringing.   This signal, which is an indication of the presence of the flaw, can then be used 

to evaluate the severity of the deterioration. The magnitude and duration of the signal 

varies based on several factors, including the depth, size and shape of the defect in the 

steel cable. 

 A primary limitation of the MFL technology is that close access to the surface of the 

steel cable is required.  Unfortunately, there are regions where the steel cables in bridges 

are embedded in thick concrete in the anchorage areas where close access to the cables is  
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not possible.  To overcome this problem, a different technique, such as the 

Magnetostrictive (MS) method, may be used.   

The basic principle behind the MS method is to transmit a traveling mechanical, acoustic, 

or electromagnetic wave along the length of the steel cable that is embedded in concrete 

and monitor the waves that are reflected from defects in the cable. This can be 

accomplished by introducing a time varying magnetic field pulse generated by a coil that 

is wrapped around the cable. The magnetic pulse causes very small change in the 

physical dimension of the steel. As a result, guided (acoustic) waves are generated in the 

steel and propagate along the length of the cable and reflect back from boundaries such as 

the cable ends, and other discontinuities including defects. The reflected waves cause 

reverse localized disturbances to the magnetic field. These disturbances can then be 

detected by means of using a coil or magnetic sensors.  Combining a permanent magnet 

and integrating the system with an external coil with a radio frequency (RF) pulse at one 

end of the steel cable can accomplish this. The various reflected waves from 

discontinuities in the steel can then be captured and analyzed to evaluate steel condition 

in inaccessible areas.  

With the above discussion in mind, the goal for this research is to combine both the MS 

and MFL methods and to design a system that would provide complete information on 

the condition of the steel in cable-supported bridges. 

Therefore, to address the problem of detecting corrosion in bridge cables, it is proposed 

to develop an MFL/MS system that is capable of inspecting the entire length of bridge 

cables outside and within the anchorage areas. 
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1.3   Outline of Thesis Contents  

In chapter 2, an overview of the applicable NDE techniques that have been attempted for 

inspection of corrosion defects in cable bridges, along with a summary of the advantages 

and disadvantages of each technique are presented.  The following NDE methods will be 

reviewed: Radiography, Computed Tomography, Ultrasound, Acoustic Emission, 

Remnant Magnet and Magnetic Flux Leakage. A proposed system solution is also 

presented at the end of the chapter. 

In chapter 3, the theory and concept of the Magnetic Flux Leakage (MFL) are provided.  

Also an overview of the magnetism concept, material classification based on their 

magnetic property and examples of corrosion defects in steel is presented. The chapter 

discusses the effect of the density of the magnetic field on defect detection. Mathematical 

models for relevant types of flaws are also discussed. The theory of Magnetostricitve 

method and general guided-wave propagation concepts are also presented. 

Chapter 4 discusses a prototype MFL system that was built for the purpose of proving the 

concept and evaluating its performance. Also, the laboratory setup and experiments, 

including the construction of a typical cable used in cable bridges, are presented. The MS 

experiments were designed to explore the feasibility of this method for detecting 

corrosion defects in the anchorage of area of bridge cables. An experimental bridge cable 

with simulated anchorage section was also built.  The experiments were carried out for 

the MFL system and the MS system using varying sizes of defects fabricated in the steel 

cable, including surface corrosion, and a single broken wire in a strand to several broken 

strands.  
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The results of the experimental work are discussed in chapter 5 and a more practical and 

efficient system design with cylindrical magnet orientation is presented in chapter 6.  

Numerical analysis for the new magnet design that shows improved performance and 

field applications is also presented. Finally, the research conclusions and 

recommendations for future work are discussed in chapter 7. 
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CHAPTER 2  

NONDESTRUCTIVE EVALUATION METHODS 
 

 

 

2.1  Introduction 

 In this chapter, a review of all applicable methods that may be used in nondestructive 

evaluation (NDE) of cable-supported bridge structures is presented. Nondestructive 

evaluation can be defined as an examination/inspection for an object to reveal its 

mechanical or behavioral characteristics in terms of internal structural, geometry, 

material characteristics, content and defects without inducing any damage to the structure 

[2]. Based on the literature survey conducted as a part of this research, the applicable 

non-destructive methods for detection of corrosion in cable supported bridges may be 

summarized as follows: 

 

2.2  Visual Inspection 

Visual inspection (VI) involves inspecting a structure visually and looking for signs of 

corrosion or other damage [10]. Visual inspection can be used virtually through all stages 

of product development and construction, starting from raw material and ending with the 

finished product. The VI can be used for inspecting gas pipes, tanks, building, bridges, 
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power generating turbines, and power plants. There are several factors that can affect the 

outcome of VI such as condition of the object under test, environmental conditions and 

the skill set for the inspector [8-10]. The condition of the object under test includes 

material, shape, size, access, and surface condition.   The shape of the object dictates the 

amount of light, and/or orientation of viewing angle to insure that all surfaces of the 

object are examined. The size of the object directly influences the pattern, direction and 

speed of the examination. Surface condition such as cleanness, rust and contamination 

may prohibit or limit the inspection process and results.  

Environmental conditions include lighting, temperature and weather. Sufficient amount 

of lighting should be available to ensure exposure of the entire surface of the object under 

test. On the other hand, an inadequate amount of light could inhibit the object's attributes 

to be revealed; for example because of shadowing. Excessive light (brightness), however, 

could also inhibit exposing the attributes of the object under test because excessive 

reflection reduces the ability of the eye to see small details [10]. If the object under test is 

inspected under high environmental temperature, the temperature may cause a distortion 

to the field of view because of heat waves. The inspector’s experience and health 

condition (stress, tension and fatigue) may adversely affect the perception of the eye and, 

consequently, affect the inspection results.  

Although there are many tools, such as cameras, magnifiers, rules, micrometers, monitors 

and scopes, that can be used to aid during VI, the inspector's eyes are the primary 

inspection tool. Since VI depends primarily on the eye for inspection, the eye is required 

to be in continuous movement (back and forth) during the inspection [10]. This rapid 

movement of the eye, after a long time of inspection, could cause muscle fatigue in the 

eye and affect the inspection results. Another variable that could limit the VI is 
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accessibility of the object under test. If the object is hidden, partially or completely 

inaccessible, the inspector may not be able to see the object and fully examine it. 

Although it is useful, VI is limited to visible signs of deterioration that appears at the 

outer surface of the material such as corrosion, erosion, cracks, voids, wear and fatigue 

[8-10]. Also, depending on the structure of the object under test, a deterioration at the 

outer surface of the object may or may not be a sign of internal gross damage.  

Unfortunately, visual inspection cannot detect non-visible or hidden corrosion, especially 

for cable-stayed bridge, because the steel cable is covered under one or more protective 

layers. However, even if the VI is used to inspect the cables of bridge structures, all 

protective layers (polyethylene and grout) will have to be removed which is expensive 

but not very practical. However, the visual inspection of cables in bridges is sometimes 

performed in a few local areas to achieve an understanding of the condition of the cables.  

In such cases, the wires or strands that are bundled together to form a bridge cable are 

pried open with a tool (i.e., wooden-wedges) so they can be inspected. This can only be 

done to a limited portion of the cable (a few feet), making VI impractical, inefficient and 

very costly.  

 

2.3  Radiography 

Radiographic methods use radiation beams to detect defects in the materials under 

inspection [8-12]. Typically, the source of the beam is either Beta or Gamma particles. X-

rays are produced by accelerating electrons at high speed under high voltage to strike a 

filament material to produce photons [8-10, 12]. The photons can then be directed at the 
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right angle towards the target under test using a special apparatus. The energy of the 

produced photons is given by [12]: 

                                                                                                     (2.1) 

Where, 

       Plank’s constant  

       Frequency of radiation (Hz) 

       Speed of light (m/s) 

       Wavelength (mm) 

 

Figure 2.1 shows a general setup for an X-ray inspection method with a material under 

inspection.  X-rays or Gamma-rays enter the material under test from one side and some 

or all exit from the other side. The beam usually travels in a straight line. However, it 

goes under scattering, and absorption process; the amount of scattering and absorption 

depends on the material's molecular structure. The beams that penetrate through the 

material are detected and recorded either on a real-time digital monitoring receiver or on 

a special radiographic detector to produce 2D images [13-19].   

 

 

 

 

 

 

 

/E h v h c λ= =

:h

:v

:c

:λ



www.manaraa.com

11 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 X-ray Method: X-ray diagram showing radiation beams penetrating an object 
and being collected at the receiver end to generate an image. 
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Images produced from the X-ray exposure are usually gray-scale with varying intensity 

based on the amount of radiation that is collected at the receiver side. These images are 

usually poor quality and are not sufficient to clearly show the presence of flaws. Also, the 

orientation of scanning has to be taken into consideration when imaging steel with with a 

small loss of section or defect since the defect may be masked by the total mass of the 

steel.  This will make it difficult to detect small defects in 2-D X-ray images. X-ray 

systems could be portable scanning devices, but special protocol has to be followed to 

ensure the safety of the operators and other personnel during the radiation exposure 

process [13, 14, 16, 18]. Although there are advantages for using X-ray systems, 

including detecting internal defects [9], they require a great amount of radiation to 

penetrate thick and dense materials such as steel cables in cable supported bridges. Such 

applications of X-ray technique will require a large source of high voltage power to meet 

the demand for higher radiation and operation of the system. Providing such high power 

at the bridge site or in the field and installation of a large testing system on a bridge cable 

can become difficult.  These make X-ray technique a non-field-worthy option for 

inspection of bridge cables. 
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2.4  Computed Tomography 

Computed Tomography (CT) uses X or Gamma beams but with the consideration of the 

beam attenuation within the material under inspection. As the beams are transmitted to 

the material under inspection in straight lines, some partially get absorbed and scattered 

due to variations in the material’s microstructure [12]. The remaining beams travel 

through the material and the attenuation is measured at the receiver end [12, 21]. The 

extent of the beam attenuation depends on the atomic structure and atomic density of the 

material under inspection and is given by [12, 21]: 

 

          (2.2)  

Where, 

I: Intensity of the beam exiting the material 

Io: Intensity of the beam entering the material 

α: Attenuation coefficient 

x: Thickness of the material under inspection  

  

 

Figure 2.2 shows a general setup for imaging with computed tomography method. It also 

shows how the beams travel through different material under inspection.  
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Figure 2.2 Computed Tomography Method:  Image reconstruction by rotating the 
detectors around the material and continually measuring attenuation. 
 

By rotating the detector around the material under inspection, and measuring attenuation, 

one can produce 2D and 3D images of the internal structure of the material. 

CT exhibits the same limitations of X-ray. As such, it has been shown that computed 

tomography is capable of detecting only relatively large losses of cross section in bridge 

cables due to corrosion or fractures [21]. Computed Tomography devices are generally 

slow in operation and are not field worthy [21]. 
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2.5  Ultrasound 

The Ultrasound technique works on the concept of generating ultrasonic waves that travel 

through the material under inspection while monitoring the reflected waves [8-12]. The 

ultrasonic waves are typically in the range of 20 KHz to 10 MHz.  The waves are usually 

generated by a transducer (crystal) placed at the surface of the material as seen in Figure 

2.3. In ultrasound testing, the transmitter and receiver are usually integrated into one 

device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Ultrasound Method: Ultrasonic waves are generated from crystal transducer at 
the surface of the material. Showing reflected waves from defects inside the material. 
 

When ultrasonic waves travel through different types of medium, they undergo 

reflections and refractions at the boundaries of these media. This interaction at the 

boundary of the media is due to the difference in their acoustic impedance. This is an 

important feature of the ultrasound method because it allows the distinction of 

defects/anomalies from the material. Defects within the material have different types of 

Wave Source 

Reflected-wave 

Sensor 

Incident wave 

Defects of different type of material 
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acoustic properties than the material, which allow the waves to reflect at their boundary 

interface with the material. Consider a set of waves that are traveling through material # 1 

and then through material # 2, each with acoustic impedance of Z1 and Z2, respectively. 

When the waves arrive at the interface between the two materials, some of the waves 

reflect to material #1 and the rest are transmitted into the second material. The amount 

and direction of reflected and transmitted waves depend on the acoustic characteristics of 

the two materials and the magnitude and angle of the incident wave, as seen in Figure 

2.4. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Ultrasound Method: Diagram demonstrating wave reflections at interface of 
two materials with different acoustic impedances. 
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The percentage of the reflected and transmitted waves can be calculated based on [8-12]:  

 

                                                                                                                     (2.3) 

 

                                                                                                                     (2.4) 

Where, 

                    The acoustic impedance for material one and two respectively 

       Reflection coefficient 

       Transmission coefficient 

        Angle of incident wave 

         Angle of transmitted wave 

         Angle of reflected wave 

If θi is at 0°, the Incident wave is perpendicular to the interface boundary, and the 

reflection coefficient can be reduced to: 

                                                                                                               (2.5) 

Table 2.1 shows the acoustic impedance for selected materials. If Z1 is equal to Z2, then 

there will be no reflected wave. However, if we consider a concrete to steel interface and 

assuming a perpendicular incident wave, then we will have 74% of the wave reflected. 
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Table 2.1 Acoustic impedances for selected material [9] 

 

 
 
 
 
 
 
 
The reflected waves can be captured by the same transmitting transducer or by another 

one, where they are converted to electrical signals for processing. Figure 2.5 shows a 

general block diagram for an ultrasound system. From the reflected waves, one can 

determine material characteristics, density and geometry of the material, and the presence 

of defects. 2D and 3D images can be obtained by cross-scanning the surface of the 

material under test. 

The Ultrasound method has many applications in industry for detecting cracks and 

defects in pipes, aircraft inspection and properties of material [9]. It also has applications 

in imaging in medicine, such as guided ultrasound for surgery, diagnostics and imaging 

of soft tissue [12]. Ultrasound can reveal internal structures of material under test, just 

like X-ray, but without the risk of health hazards. It can inspect and penetrate almost any 

material including ceramic, metal, concrete, etc. However, it requires significant operator 

training. Large areas or volume of materials cannot be tested practically, and it can be 

expensive. Most of the sensors that are available require direct contact with coupling 

material such as water or gel [8-12]. 
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Figure 2.5 Ultrasound: Block Diagram for a typical ultrasound system. 
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2.6  Acoustic Emission Monitoring 

The concept of Acoustic Emission monitoring is based on the principle that mechanical 

waves are generated when damage occurs in materials. The waves could be generated, for 

example, from a crack or fracture of steel wires when stored energy is released due to the 

growth of a crack or defect. The waves created from such events travel in the medium of 

the material with a constant speed. In order to capture the waves, a real-time monitoring 

of the material under test is needed. Sensors are usually placed close to the source of 

energy release and typically installed on exposed surface of the material, as seen in 

Figure 2.7 below.  Sensors capture the traveling waves and generate relevant electrical 

signals. These signals are usually stored for post-processing and data analysis where 

various signal characteristics are evaluated and correlated to the defect, see Figure 2.6 

below. In this method only new damages can be detected, as long as it is continuously 

being monitored. As such, existing damages cannot be detected [8-10, 28]. 

 

 

 

 

 

 

 

 

 

Figure 2.6 Acoustic Emissions: An example of acoustic emission  
signal caused by a mechanical damage to material under monitoring [45]. 
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Figure 2.7 Acoustic Emissions: Block diagram for a typical acoustic  
emission system [45] 

 
 
 
 
 

2.7  Magnetic Flux Leakage 

The concept of magnetic flux leakage is based on applying an external magnetic field to a 

ferromagnetic object under test, while continuously scanning the entire length of the 

object. As a result, the object under inspection gets magnetized and flux lines flow within 

the object. The stronger the applied magnetic field, the higher the number of flux lines up 

to the level of saturation. Magnetization of an object depends on the property of the 

material and it is strongly favorable for ferromagnetic materials such as steel. If a steel 

bar or cable is exposed to a magnetic field, flux lines flow in straight lines inside the 

object in a direction from the north pole to the south pole of the magnet. As such, the flux 

lines inside the steel bar or cable are confined within the steel as long as there are no 

physical changes.  However, if there are physical changes, such as loss of cross section 
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due to corrosion or fracture, the flux lines leak outside the steel and into the surrounding 

area causing localized fluctuations in the main magnetic field. These fluctuations can be 

detected by using magnetic sensors, such as Hall-effect, to determine the presence and 

magnitude of a defect. 

Although MFL is very successful in detecting small and large flaws, it cannot be used to 

inspect the inaccessible areas of structures or bridges, particularly in the cable anchorage 

area [46-51]. The MFL method is described in more detail in Chapter 2, where materials 

are classified based on their magnetic characteristics and mathematical models for 

selected defects [8, 9, 30-33]. 

 

2.8   Remnant Magnetism 

The Remnant Magnetism (RM) is similar to the concept of the MFL as described in the 

previous section. However, RM uses a high level of magnetic field to saturate the 

material under test (typically steel). The flux fluctuation can then be measured with Hall-

effect sensors, or coils [8-10, 33], where the measurements can be taken with or without 

the active field. Without the active field, the measurements are based on the fluctuation 

from the residual magnetic field caused by any existing flaws. Unlike the MFL method 

where there is no need to saturate the test subject, the RM is based on using a time-

varying magnetic field that requires coils that use a significant amount of AC power. 

Although RM is successful in detecting small and large flaws, the disadvantage of power 

and significant equipment infrastructure requirements makes it unsuitable for field 

applications to inspect bridge cables. 
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2.9  Summary and Proposed Research 

There are other NDE methods such as Electrical Resistance, Time Domain 

Reflectometry, Linear Polarization, Surface Potential Survey and Themography that may 

be applicable to the inspection of bridge cables. Details of these methods can be found in 

[8-10], [21-29] and [35-44]. Although, theoretically, any of the above mentioned NDE 

methods can be used for inspection of steel of cable bridges, many of them suffer 

practical limitations.  MFL has been successfully demonstrated to detect defects, loss of 

section and corrosion in reinforced, pre-stressed and post-tensioned concrete structures 

[46-51]. As such, based on the literature survey, it seems that only MFL would offer both 

the performance required to detect defects in steel and provide practicality for field 

application. Therefore, to address the problem of detecting corrosion in bridge cables, it 

is proposed to develop an MFL/MS system that is capable of inspecting the entire length 

of bridge cables outside and within the anchorage areas. 
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CHAPTER 3  

THEORY AND CONCEPTS 
 

 

 

3.1  Introduction 

The previous chapter presented a review of all applicable methods that may be used in 

the nondestructive evaluation of cable-supported bridge structures. It was also shown that 

most of these methods suffer from practical limitations, which make them unsuitable for 

inspection and evaluations of cable-supported bridge structures. However, the magnetic 

flux leakage (MFL) technique has been successfully demonstrated to detect loss of 

section due to corrosion in pre-stressed and post-tensioned concrete structures [46-51]. 

As such, based on the literature survey, it seems that only MFL method can offer both the 

performance required to detect defects in steel and the required practicality for field 

application. Therefore, in this chapter, the theory and concept of the MFL method is 

provided.  An overview of the magnetism concept, material classification based on their 

magnetic properties and examples of corrosion defects in steel are presented. This chapter 

also discusses the effect of the density of the magnetic field on defect detection. 

Mathematical models for relevant types of flaws are also discussed. The theory of 

Magnetostricitve method and general guided-wave propagation concepts are also 

presented. 
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3.2  Magnetic Flux Leakage 

An understanding of the principles of magnetism, classification of magnetic materials and 

their natural performance is presented here. Figure 3.1 shows a permanent magnet bar to 

demonstrate the concept of magnetism.  

 

 

 

 

 

 

 

 

Figure 3.1 A Permanent magnet bar to demonstrate magnetism 
 

By definition, a magnet has two poles; a north-pole and a south-pole. The interaction 

between the two poles of a magnet is known as magnetic field H, measured in 

Ampere/Meter (A/m). The magnetic field is represented by flux lines that travel from the 

north-pole to the south-pole outside the magnet as seen in figure 3.1. However, the flux 

lines travel in an opposite direction, from south-pole to north-pole, inside the magnet. 

The flux lines are vector quantities (i.e., has magnitude and direction) and they reflect the 

strength of the magnet; the stronger the magnet, the higher the density of the flux lines. 

The spacing among the flux lines is a measure of the flux density B, measured in Tesla 

(T); the closer the distance among the flux lines, the higher the flux density. However, in 

order for the flux lines to exist or travel, they will need a path or a medium, such as air, to 

N S 
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travel through. The path or medium must have certain properties to permit the magnetic 

flux to pass through. These properties are referred to as “magnetic permeability” and the 

behavior of the flux lines is governed by the basic principles of magnetism. These 

principles can be summarized as follows: 

1. Flux lines travel through the path of least resistance; which in magnetic terms is 

the path within a medium with greatest permeability. 

2. Flux lines repel each other if their flow direction is the same, or flux lines can 

never cross each other. 

3. Flux lines always travel from the north-pole to the south-pole in a closed loop 

outside the magnet. 

Also, the relationship between the magnetic field and the magnetic flux density is non-

linear, as shown in figure 3.2 

 

 

 

 

 

 

 

 

Figure 3.2 Relationships between the magnetic field and the magnetic flux density 
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When a magnet is placed near a ferromagnetic object; for example steel, the flux lines are 

channeled through the material to form an induced magnetic flux as seen in Figure 3.3 

below.  

 

 

 

 

 

 

 

Figure 3.3 Magnetic flux inside a steel bar 
 

The flux density in the material depends on the strength of the external magnetic field 

and the type of material. Materials react differently to magnets based on their chemical 

and mechanical structure and how they permit the flux lines to channel through them. 

Materials, based on their magnetic characteristics, can be classified as diamagnetic, 

paramagnetic, ferrimagnetic and ferromagnetic. A diamagnetic material resists the 

magnetic force and has low permeability to allow flux lines to travel through it. An 

example of such material is bismuth or helium. If the material allows some of the flux 

lines to travel through it, and if the flux inside is more than the flux outside, then they are 

called paramagnetic. An example of a paramagnetic material is aluminum (AL). 

However, if the material allows large number of the flux lines to pass through it, (i.e., if 

the flux inside the material is much more than the flux outside it) the material is classified 

as ferromagnetic or ferrimagnetic. An example of ferromagnetic material is steel and an 
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example for a ferrimagnetic material would be iron oxide (FeO). Ferrimagnetic and 

ferromagnetic materials remain magnetic as long as they are kept below a specific 

temperature (Curie temperature). Ferromagnetic material has higher Curie temperature 

than ferrimagnetic. In ferrimagnetic material, some magnetic dipoles (very small regions 

in the material) are aligned in one direction and others are in an opposite direction. 

However, in ferromagnetic material, majority of the magnetic dipoles are aligned in one 

direction. 

Since we are interested in inspecting steel, it is very important to understand the 

properties and behavior of ferromagnetic materials. As such, a review of the basic 

properties of the ferromagnetic materials is provided next.  

Ferromagnetic materials exhibit physical response or changes when subject to an external 

magnetic field. This response is shown as an alignment of their magnetic dipoles, 

magnetic moments, parallel to the direction of the external magnetic field. As such, 

ferromagnetic materials usually carry greater flux lines through them than the 

surrounding air, up to a limit. When they reach this limit they become saturated and 

behave as a transparent medium. When saturation level is achieved, full alignment of the 

magnetic dipoles is resulted. However, below this saturation level the relation between 

the external magnetic field and the density of flux lines passing through them is non-

linear, as described in figure 3.2.  Flux lines always leave the surface of ferromagnetic 

materials at a right angle.  

 

The MFL method is based on applying a static magnetic field to a ferromagnetic material, 

like a steel bar, and continuously scanning the surface to monitor and detect fluctuations 

in the magnetic flux caused by discontinuities, or flaws, inside the steel. When applying a 
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magnetic field to a ferromagnetic material, the magnetic dipoles orient themselves in the 

same direction of the magnetic field. The greater the magnetic field, the more alignment 

of the dipoles until the material reaches its saturation limit. The alignment of the 

magnetic dipoles allows the magnetic flux lines to pass through the steel, as seen in figure 

3.4. The stronger the magnetic field, the greater the density of the flux lines in the steel.  

 

 

 

 

 

 

 

 

 

 
Figure 3.4 Alignment of the magnetic dipoles (a) no magnetic field, (b) with the direction 

of the magnetic field 
 

The flux lines in the steel will be confined within the steel as long as there are no physical 

changes. However, if there are physical discontinuities in the steel, such as loss of cross 

section or corrosion, the magnetic flux lines will leak outside the steel to the surrounding 

area. These fluctuations can then be detected by Hall-effect sensors to indicate the 

presence and magnitude of flaws in the steel as seen in figures 3.5 and 3.6. 
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Figure 3.5 Demonstrating MFL concept with no flaw in a steel bar
 

 

 

 

 

 

 

 

 

Figure 3.6 Demonstrating MFL concept with a flaw in a steel bar
 

 

 

Magnet 

S 

Magnet 

S 

 
 
 
 
 
 
 
 
 
 
 

Demonstrating MFL concept with no flaw in a steel bar

Demonstrating MFL concept with a flaw in a steel bar

MagnetSensor 

MagnetSensor 

30 

Demonstrating MFL concept with no flaw in a steel bar 

Demonstrating MFL concept with a flaw in a steel bar 

Magnet 

N 

Magnet 

N 

MFL Signal 

MFL Signal 



www.manaraa.com

31 
 

 

 The flux leakage is dependent on the size of the flaw, the strength of the magnetic field 

and the distance between the test subject and the magnetic field source and the sensor. 

The stronger the magnetic field, the more the leakage of the flux lines. Similarly, the 

larger the flaw is the more leakage of the magnetic field.  Figure 3.7 demonstrates the 

concept of MFL and the effect of the strength of the magnetic field on the amount of flux 

leakage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3.7 Effect of strength of magnetic field on the density of induced flux lines. (a) 
Low magnetic field, (b) Medium magnetic field and (c) Strong magnetic field  
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Figure 3.8 shows an example of a typical flaw signature for a cylindrical type flaw, where 

A and B represent quantitative measures of the peak-to-peak amplitude and width of the 

flaw.  

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Typical MFL flow signal; A is the Peak-to-Peak magnitude and B is the width 
of the flaw. 
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3.2.1  MFL Mathematical Models 

The MFL technique has been widely used in NDE for detecting metal-loss due to 

corrosion or fatigue cracking problems in steel structures, particularly for inspecting oil 

and gas pipe lines. The usage of the MFL technique to inspect gas pipe lines goes back to 

early 1960’s [52-63]. Similar to other NDE techniques, the interest when using the MFL 

method is to be able to predict the characteristics (size and shape) of the defect by solving 

the inverse problem of the signal output recorded from MFL sensors. As such, many 

methods have been attempted to solve the inverse problem solution; these methods can be 

classified as model or non-model based methods. The model-based methods use a 

physical model to solve the inverse problem. These methods rely on iterative and 

optimized loops to find the solution for the inverse problem based an initial guess or prior 

knowledge of the MFL defect parameters.  These methods rely on numerical models [55-

57], such as finite element method (FEM), analytical models [58-61] and neural networks 

[62-64]. Although numerical methods provide an accurate solution for the inverse 

problem, they are computationally expensive. On the other hand, analytical and neural 

network methods are less accurate due to the approximation made to drive them, but they 

are faster methods [71].  

The non-model based methods use signal processing techniques to correlate the signal 

from the MFL sensor to the shape of the defect. For example, the neural network method 

is used to train the model to predict the shape of the MFL signal based on prior 

knowledge. However, the model is usually limited to a specific region in the defect and is 

difficult to apply to an arbitrary shape defect [71]. Other methods tried to combine the 

accuracy of the FEM methods with the efficiency of the analytical methods using space 

mapping (SM) [65-70]. This method utilizes a prior knowledge and is usually applied for 
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estimating defects with simple geometry such as rectangular or square. However, in 

recent work [71], edge detection method is used to predict the shape of the flaw from the 

top, while using SM methods to estimate the depth parameter for an arbitrary defect.  

Also, other methods have been proposed for the mathematical models of MFL defects 

based on the type of defect. Metal loss defects are classified as surface and sub-surface 

defects. For surface defects, the focus of the work was to develop an analytical model for 

a slot-type defect. As such, different models have been proposed which include Foster 

[16] and Zatsepin, and Shcherbinin [18, 19]. For sub-surface defects, the work was 

focused on two particular types of defects, cylindrical and spherical.  The steel used in 

cable-stayed bridges is a bundle of either straight wires or strands; each strand consisting 

of a certain number of individual twisted wires, as seen in figures 3.9 and 3.10. Although 

defects can be of any shape, it is reasonable to consider fractured wires as a target defect 

for our work following the same approach and consideration for similar types of research. 

As such, a broken wire is best represented by cylindrical sub-surface flaw, as seen in 

figure 3.10.  The mathematical model for a sub-surface cylindrical flaw, seen in figure 

3.11, has been developed by Swartzendruber [20] and it is available in the literature. 

Therefore, a brief description of the model is presented in this section. 
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Figure 3.9 Cable showing bundle of steel wires/strands, concrete grout and protective 
cover 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Typical steel strands with bundle of wires used in main cables of cable-
stayed bridge; Showing man-made defects, from top to bottom, of one broken wire, two 

broken wires and five broken wires. 
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Figure 3.11 MFL Mathematical Model: Illustration of Sub-surface cylindrical flaw  
 

The analytical model for the magnitude of the flux leakage for a sub-surface cylindrical 

flaw of a radius a and depth h can be described with the following equation [20]: 
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            Permeability of the cylindrical defect 

            Depth of the flaw 

            Radius of the flaw 

            The applied magnetic field 

            The horizontal component of the magnetic field 

            The vertical component of the magnetic field 

 

The mathematical model shown above represents the flux leakage for a sub-surface 

cylindrical defect in a two-dimensional form. Figure 3.12 shows a comparison between a 

real magnetic flux leakage flaw signal from a test and that from the mathematical model 

of equation (3.2). The figure demonstrates that there is a good agreement between the 

signals from the real flaw and the mathematical model. 

 

 

 

 

 

 

 

 

 
Figure 3.12 Acquired MFL signal and predicated signal based on the mathematical model 
in equation (3.2). 
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The mathematical model shown above represents the flux leakage for a sub-surface 

cylindrical flaw in 2D only and it does not relate to the length of the flaw. An example of 

a 3D mathematical model for the cylindrical flaw is given in the following equation [11]: 

� =
���

����	�

�
��
 

Where Y is the signal amplitude as a function of scan position (X), B is the peak-to-peak 

separation and A is the peak-to-peak signal amplitude. An example of signal from a 

cylindrical flaw is shown in figure 3.12. 
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3.3  Magnetostrictive 

 

The Magnetostrictive method works on the concept of applying an external time-varying 

magnetic field to the surface of a ferromagnetic material (steel cable) for a short period of 

time to cause small localized physical change. This physical change results in a launch of 

mechanical waves that travel along the length of the cable. When the waves reach at the 

end of the cable (anchorage-area) they reflect and travel in the opposite direction. The 

waves not only reflect from the end of the cable, but they also from the loss of section 

such as broken wires or corrosion along the wave path in the cable. A transmitting coil, or 

an electric wire wrapped around the cable, can be used to transmit the initial wave. 

Similarly, a receiving coil can be used to monitor the reflected waves. The received 

signal can then be amplified and recorded on a personal computer. 

As stated in the previous section, if a ferromagnetic material is exposed to an external 

static magnetic field, the dipoles in the material will align themselves in the direction of 

the magnetic field. However, if the same material is exposed to a time-varying magnetic 

field, the magnetic field produces a time varying current (Eddy currents) through 

magnetic induction at the surface of the material. The interaction between the Eddy 

currents and the static magnetic field produces a force whose magnitude is proportional 

to the Eddy currents and the magnetic field applied. The direction of this force is 

orthogonal to the direction of the current and the magnetic field. The force is usually 

referred to as “Lorentz Force” and is identified by the following equation: 

 
F =J x H = an (|J||H|sin(θJH) 

 (3.5)  

Where:  



www.manaraa.com

40 
 

 

F = Lorentz force  

H= magnetic field 

J= induced Eddy current 

an= a vector that points in a direction that is perpendicular to H & J 

θ= the angle between H & J 

 

The force works on the lattice structure of the ferromagnetic material, causing a very 

small localized disturbance (strain). This strain acts as a source to generate waves that 

travel in all directions through the material and can be related to the applied stress based 

on the following equation [79]: 
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Where,  

u = displacement, 

ρ = density, 

σ = stress 

The equations that relate stress to strain are as follows [79, 80]: 
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Where,  

H= magnetic field 

B= magnetic flux 
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λ = magnetostrictive constant,  

E
a 

= Young’s modulus at constant flux,  

∂u /∂y = strain  

μr = relative permeability 

 

H, B, λ, E
a
, and μr are known quantities and the goal is to find u. substituting B from 

(3.7) into (3.8): 
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Differentiate and substitute (3.10) into (3.6): 
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Where c = √ (E/ρ), is the velocity of the wave in the medium. 

Depending on the direction of the Eddy currents and the direction of the static magnetic 

field, different types of waves can be generated; Longitudinal, Transverse (Shear), 

Rayleigh and Lamb waves. Figure 3.13 demonstrates the concept of magnetostriction to 

generate longitudinal waves and Figure 3.14 shows how transverse waves are generated. 

In this illustration, a steel plate is exposed to an external static magnetic field H. This 

could simply be a permanent magnet. The plate is also exposed to a nearby electrical 

conductor that is carrying a time varying current I that generates a time-varying magnetic 

field surrounding the conductor. An image of the current I is created at the surface of the 
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steel plate, current J, due to magnetic induction between the electrical conductor and the 

steel plate, which is an electrical conductor too.  

 

 

 

 

 

 

 

 
Figure 3.13 Illustration of generating longitudinal waves using Magnetostriction; Steel 
plate is exposed to a static magnetic field H whose direction is at right angle with Eddy 
currents flowing at the surface of the plate. The result is a force that is orthogonal to the 

magnetic field and Eddy currents 
 

 

 

 

 

 

 

 

 

Figure 3.14 Illustration of generating transverse waves using Magnetostriction. Steel 
plate is exposed to a static magnetic field H whose direction is at right angle with Eddy 
currents flowing at the surface of the plate. The result is a force that is orthogonal to the 
magnetic field and the current that generates a transverse wave. 
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The current J and the magnetic field H interacts at the surface of the plate and the result is 

a force F that generates a longitudinal, or a transverse wave, depending on the angle 

between the current J and magnetic field H. The results of the force F is waves that travel 

within the material. By definition a wave is “a disturbance of a medium from a natural or 

equilibrium condition that propagates without the transport of matter” [9]. One may think 

of this as waves travelling through a solid bar, energy from the wave travel through the 

bar, but the particles of the bar do not travel through the material. Waves travel in nature 

through all kinds of media; solid, gas, liquids (wood, steel, water, oil, concrete and, of 

course, air). The manner in which the waves travel (propagate) through the material 

depends on the material's characteristics and its responses to particular wave functions. 

Waves are generally classified based on characteristics such as frequency, magnitude, 

wave-number, phase velocity and group velocity.  

 

Wave-number: 

The wave-number is a real number and it is inversely proportional to the wave length 

given by: 

  ζ= 
�

�
         (3.12) 

 

 Where, ζ is the wave-number in radians per meter, and λ is the wave length in feet   

 

Phase velocity: 

Phase velocity is the speed at which individual wave crests travel and is given by 

vph= 
�

�
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         (3.13) 
 

 Where, vph is the phase velocity in feet per second, and  

ω is the circular frequency in radians per feet   

 

Group velocity: 

Group velocity defines how fast the material particles are moving and is given by 

vgr= 
��

��
 

         (3.14) 
 

 Where, vgr is the group velocity in feet per second,  

ω is the circular frequency in radians per feet. 

 

Almost all waves propagate in one of the following methods; longitudinal, transverse 

(Shear), Rayleigh and Lamb waves. 

 

Longitudinal wave:  

Longitudinal wave is a wave in which the particles of the material vibrate in parallel to 

the direction of the propagation. The longitudinal wave is also called pressure wave or P-

wave, because of the compression and tension of the particles that are along the direction 

of the propagation. Longitudinal wave’s propagation is illustrated in Figure 3.15. 

 

Transverse wave:  

Transverse wave is a wave in which the particles of the material vibrate perpendicular to 

the direction of wave propagation. Because the transverse particles’ motion has an 



www.manaraa.com

45 
 

 

associated shear stress, the transverse waves are often called shear waves. Transverse 

waves propagation is illustrated in Figure 3.16. 

 

Rayleigh wave:  

Rayleigh wave is a wave in which the particles of the material vibrate in directions, 

perpendicular and parallel, to the direction of propagation. They are commonly found in 

thick plates, where they penetrate to one wave length depth in the material. Rayleigh 

waves are illustrated in Figure 3.17. 

 

Lamb wave:  

Lamb waves are similar to Rayleigh waves, except they propagate in thin plates, where 

the thickness of the plate is a few wavelengths. Although the particles motions’ is 

possible in multi modes, the most common modes are symmetrical and asymmetrical. 

Symmetrical lamb waves mode moves in symmetry about the medium of the plate. The 

propagation mode is also called extensional mode because the plate is stretched and 

compressed in the wave direction. The asymmetrical lamb wave mode is also called 

flexural mode because majority of the particles movement is normal to the surface of the 

plate; the two surface of the plate move on the same direction. Lamb waves are illustrated 

in Figure 3.18. 
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Figure 3.15 Illustration of longitudinal waves; particles of the material are moving in 
parallel to the direction of propagation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Illustration of transverse waves; particles of the material are moving 
perpendicular to the direction of propagation.  
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Figure 3.17 Illustration of Rayleigh waves; particles of the material are moving 
perpendicular and parallel to the direction of propagation.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.18 Illustration of Lamb waves; (a) asymmetric waves; (b) symmetric waves. 
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3.3.1 Magnetostrictive Mathematical Models 

The study and mathematical modeling of the longitudinal guided waves have been 

reported extensively in the literature [77-83]. Only the governing equations are presented 

here. Illustration of the mathematical model is shown in Figure 3.19 [81]. The transmitted 

and received longitudinal waves can be expressed in the following equations [81]: 
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Where,  

oV

x
=τ , 

oV

l1
1 =τ  

x =displacement reference point in ft 

Vo = velocity of the wave in ft/sec 

l1 = the length of the cable under the transmit/receive coil 

k1, k2 = constants 

d = travel distance on the cable in (ft) from reference point 

vt = velocity function of transmitted wave in ft/sec 

vi = induced voltage function at receiver coil in volt 

φ = magnetic flux function Weber/ft 

 

 

 

 

 

 

 

 



www.manaraa.com

49 
 

 

 
 
 
 
 
 

 
Figure 3.19 MS Mathematical Model: Transceiver coils is wrapped around one end of the 

cable, x is a reference point, l is the length of cable under the coil and d is traveling 
distance. 

 

Equation (3.15) describes the velocity function/displacement in the bar at location d and  

time t due to the magnetostrictive effect. Equation (3.16) describes the induced voltage at 

the transceiver coil due to the inverse magnetostrictive effect. 
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Figure 3.20 shows a comparison between a real MS flaw signal from a test and that from 

the mathematical model of equation (3.15) and (3.16). The figure demonstrates that there 

is a good agreement between the signal from the real flaw and the mathematical model. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.20 Acquired MS signal and predicated signal based on the mathematical model 
in equation (3.15) and (3.16). 
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3.3.2 Application of Magnetostrictive to Cable Inspection 

The principle of using the MS concept to inspect cables in bridges is to transmit a 

traveling wave along the length of the cable and monitor the reflected waves. This can be 

accomplished by creating a localized disturbance in the steel cable using a time-varying 

magnetic pulse. The magnetic pulse causes a very small change in the physical 

dimensions of the steel cable; in the order of few parts per million. As a result, guided 

waves are generated inside the cable, where they propagate along the length of the cable. 

For the most part, the reflected waves are resulted from discontinuities in the steel cable 

or the ends of the cable. The reflected waves cause reverse localized disturbances to the 

magnetic field. These disturbances can then be detected by means of using a coil or 

magnetic sensors.  Combining a permanent magnet and wrapping an external coil at one 

end of the steel cable and coupling an RF pulse can accomplish this. The various 

reflected waves from the steel cable can then be analyzed to evaluate the steel condition 

in the inaccessible areas such as the anchorage zones of cable-supported bridges. Figure 

3.21 shows a conceptual design for the MS system. 
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Figure 3.21 Magnetostrictive method: Demonstration of the MS method, showing a RF 
coil wrapped around the cable and energized by a RF pulse to produce guided waves. 

 

 

The bias magnet is used to effectively couple the electrical/magnetic pulse to an acoustic 

wave. The transceiver coil is used as a transmitter to send the magnetic pulse and also as 

a receiver to receive reflected waves. The MS method will enable us to inspect the 

inaccessible areas of the cable (i.e., the anchorage area) as seen in figure 3.22 
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Figure 3.22 Demonstration of the use of the MS method for inspecting cable in the 

anchorage area 

 
The steel strands in the cable within the anchorage area are usually fanned out into 

individual strands, where they are anchored by a steel termination plate at the end. The 

strands inside the anchorage area are typically inaccessible and are covered by concrete. 

This research has investigated the introduction of the MS method at the exposed end of 

the cable and near the face of the concrete anchorage block to inspect the condition of the 

cable inside the anchorage zone. In this configuration, the guided wave will travel 

through the cable and individual strands. It is expected that the guided waves reflect back 

from the end of the strands as well as from any defects in the strands. The reflected waves 

can be captured with a receiver coil, where they are converted to electrical signals. The 

time-domain signals can then be analyzed to distinguish the presence of defects from 
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reflections from within the anchorage-area. Since the length of the cable inside the 

anchorage-area and the speed of wave propagation in steel (16,978.3 ft/sec) are generally 

known [24], one can calculate the location of any defects by observing the traveling times 

from the reflected signals. A typical range of the frequency for the RF pulses used in steel 

inspection is between 8 and 85 KHz [23, 24], with an RF pulse current of up to 41A [24]. 

As such, we expect a significant amount of current and a near saturation magnetic field to 

produce an acoustic wave with sufficient energy to travel along the cable strands. 

However, the key advantage of using the MS concept is that it provides a non-contact, 

direct coupling of energy to the steel to reduce signal losses due to boundary conditions. 

A simplified acoustic interface for the cable is shown in Figure 3.23. The amount of 

reflection can be calculated using the equations 2.3, 2.4 and 2.5 presented in Chapter 2. 

By considering the acoustic impedances of the steel and concrete from Table 2.1, one can 

calculate the expected reflection at the steel-concrete interface to be about 74%, assuming 

90° incident waves. The equation describing the decay of the wave is given in Equation 

2.2 and it is repeated here for convenience: 

 

          (3.17)  
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Figure 3.23 Simplified diagram for equivalent cable material acoustic interfaces, showing 
cable wires fanning-out and terminated at a steel plate. Z is the acoustic impedance of the 

material. 
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CHAPTER 4  

EXPERIMENTAL PROGRAM 
 

 

 

4.1 Introduction 

This chapter describes test specimens, instruments and the general experimental setup 

used in conducting tests to assess the application of MFL and MS methods. The goal of 

these experiments is to provide an assessment of feasibility of using the MFL method for 

detecting steel defects in cable-bridges. Furthermore, the tests are designed to measure 

the sensitivity of the MFL to the defects with varying size and location within the cable. 

A prototype MFL system was built to carry out the experiments. Also, several steel 

specimens were used with fabricated defects to simulate real defects in the field. A test 

cable similar to the cables in bridges was also built to aid the evaluation.  Similarly, 

several laboratory setups and experiments were carried out to assess the feasibility of 

using the MS method for detecting defects in the cable within the anchorage area. The 

effect of defect size and the ability of the MS to detect defects with varying sizes were 

also evaluated. Section 4.2 describes the details of the prototype MFL system, while 

section 4.3 details the MFL experiments.  The prototype MS system setup is discussed in 

section 4.4. Section 4.5 provides the details of the MS experiments carried out on 

multiple steel specimens. 
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4.2 MFL System Prototype 

The MFL system developed consists of two strong permanent magnets as shown in figure 

4.1. Each magnet is polarized perpendicular to its surface and the flux lines travel from 

the north-pole surface of the first magnet to the south-pole surface of the second magnet. 

The pair of magnets is polarized opposite each other to allow the flux lines to travel from 

one magnet to the other, creating a uniform magnetic field between the two magnets. 

Each magnet block is 8 in long by 4 in wide by 2 in thick.  
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     Sensors 

Figure 4.1 The MFL system with two permanent magnets and a sensor enclosure 
in the middle [46, 48]. 
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Each magnet’s dimensions and layout have been optimized to provide a uniform 

magnetic field and maximum field penetration (2-3 in from the surface of the cable) 

within the desired limits of detection for loss of section in bridge cables. 

A Hall-effect sensor enclosure that includes an array of ten Hall-effect sensors and a 

series of signal amplifiers has been placed between the two magnets.  The Hall-effect 

sensors are placed at the isocenter of the two magnets to assure symmetry for the resulted 

MFL flaw signals. The Hall-effect sensors used in this MFL system are surface sensors 

and arranged to capture only the vertical component of the magnetic field leakage. The 

Hall-effect sensors are arranged in two layers; the near field layer that consists of seven 

sensors, and the far field layer (placed at 1 in from the near field sensors) that consists of 

three sensors. The lateral distance between each two adjacent sensors is kept at 1 in. The 

arrangement of the two layers of sensors allows for additional signal processing to 

recognize and eliminate non-defect artifacts. 

 

The entire magnet and sensor assembly is mounted on an aluminum frame with wheels to 

allow moving the magnet on the surface of the cable. An encoder device is attached to 

one end of the frame to allow tracking of the position of the scan and subsequently it is 

used to identify the location of defects. The output of the sensors is connected to a data 

acquisition device. The data from sensors is collected and displayed in real time on a 

laptop computer using the LabVIEW software from the National Instrument Company 

(NI). The software has been designed to allow continuous display of data from all 10 

sensors simultaneously or from selected sensors only. Further post processing software 

application has been created to allow for data analysis. 
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4.3 MFL Laboratory Experiments 

To demonstrate the capabilities and effectiveness of the MFL system, several 

laboratory experiments were conducted.  A 4.5 in diameter bridge cable of 8 ft long 

which is similar to the commonly used bridge cables was used in the laboratory. The 

bridge cable consists of a bundle of 19 strands, as seen in Figure 4.2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

Two strands, one at the edge and one at the center of the strand bundle, were replaced 

by two copper tubes to allow insertion of strands with pre-set flaws in the laboratory 

bridge cable. Several defect sizes, from a single wire fracture to a complete strand 

fracture, were fabricated in the inserted strands. 

The experiments were carried out by scanning the surface of the cable by moving the 

Figure 4.2 Bridge cable showing a bundle of prestressing steel strands covered 
with concrete grout and protective HDE cover. 
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magnets-sensors assembly over the entire length of the cable as seen in Figure 4.3. The 

experiments were repeated for different inserted strands that contained different defects. 

In each experiment, the data from all the sensors is presented on the computer screen in 

real time using the system’s data acquisition software and stored in a computer for post-

processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 MFL system installed on a laboratory bridge cable; showing 19 
stands cable, with two stands inserted in the top and center holes in the cable. 
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To demonstrate the sensitivity of the MFL system to the size of the defect, several 

experiments were conducted where defect size was varied from a single wire fracture to 

several broken wires in one strand. Figure 

additional strands with 1, 2, 3, and 6 broken wires

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Prestressing steel strands with no flaws (top) and with different 

To demonstrate the sensitivity of the MFL system to the size of the defect, several 

experiments were conducted where defect size was varied from a single wire fracture to 

several broken wires in one strand. Figure 4.4 shows a strand with no defects and 

itional strands with 1, 2, 3, and 6 broken wires. 

Figure 4.4 Prestressing steel strands with no flaws (top) and with different 
sizes of flaws. 

61 

To demonstrate the sensitivity of the MFL system to the size of the defect, several 

experiments were conducted where defect size was varied from a single wire fracture to 

shows a strand with no defects and 

Figure 4.4 Prestressing steel strands with no flaws (top) and with different 
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4.4 MS Laboratory Experiments 

The general block diagram for the MS system used in the experiments is shown in figure 

4.5. The RF pulse is generated using a tone generator. The frequency of the RF pulse is 

7.5 KHz with 220 μsec duration. The RF pulse is fed into an audio power amplifier with 

350 watts of power and a frequency range from 400 Hz to 20 KHz. The maximum output 

current of the power amplifier is about 20A that is connected to the transmitter coil. The 

transmitter coil consists of a 12-gage wire wound around a steel strand with 40 turns. The 

coil is placed at the end of the magnet, 12 in away from the receiver coil. The receiving 

coil is placed at the center of the magnet in the linear region with 160 turns wound 

around the strand. The output of the receiving coil is connected to an amplifier device 

(AD620) with a signal gain of 1000 and a signal-to-noise ratio (SNR) of 85 dB. A NI data 

acquisition card (DAQ6024) and the LabVIEW software were used to acquire and record 

the data into a PC. The sampling rate used in acquiring the signal is 200 KHz for duration 

of about 10 seconds. The collected data is then averaged using 10 points averaging filter 

to improve the SNR. Figure 4.6 shows the hardware components for the MS system 

experiments. 
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Figure 4.5 Illustration diagram for the MS experimental setup; 
tone generator, RF receive coil, RF transmit coil, small signal preamplifier, power 

amplifier, data acquisition interface box and PC.  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Illustration diagram for the MS experimental setup; showing, magnet pair, 
tone generator, RF receive coil, RF transmit coil, small signal preamplifier, power 

amplifier, data acquisition interface box and PC.   
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showing, magnet pair, 
tone generator, RF receive coil, RF transmit coil, small signal preamplifier, power 
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Figure 4.6 MS System Components; including, magnet, RF receive coil, RF transmit 
small signal preamplifier, power amplifier, data acquisition interface box and PC.  

 
 
 
In all of the experiments, the steel strands and the receiver coil were placed parallel to the 

direction of the magnetic field at the center of the linear region 

location of the flaws was kept constant

all the experiments.  Figures 4.7 and 4.8 show the placement of the strands and flaws 

within in the laboratory setup.

The experimental setup fo

and a 13 stands cable-anchorage setup. 

setup. 

 
Figure 4.6 MS System Components; including, magnet, RF receive coil, RF transmit 

small signal preamplifier, power amplifier, data acquisition interface box and PC.  

In all of the experiments, the steel strands and the receiver coil were placed parallel to the 

direction of the magnetic field at the center of the linear region of the magnets. The 

location of the flaws was kept constant at 63.5 in from the center of the receiving coil in 

all the experiments.  Figures 4.7 and 4.8 show the placement of the strands and flaws 

within in the laboratory setup.  

p for the MS tests included two separate setups: single strand setup 

anchorage setup. The next section provides more details on each 
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Figure 4.6 MS System Components; including, magnet, RF receive coil, RF transmit coil, 
small signal preamplifier, power amplifier, data acquisition interface box and PC.   

In all of the experiments, the steel strands and the receiver coil were placed parallel to the 

of the magnets. The 

from the center of the receiving coil in 

all the experiments.  Figures 4.7 and 4.8 show the placement of the strands and flaws 

single strand setup 

The next section provides more details on each 
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4.4.1 Single-Strand Experimental Setup

A total of six strands were used in this setup with varying flaw sizes. All of the strands 

were about 10 ft long. The first strand used in the experiment was without any defects 

except with small amount of surface rust. This establishe

experiment. The second strand had one broken wire out of the seven wires that make a 

steel strand, the third strand had two broken wires and the fourth strand had 3 broken 

wires. The fifth strand had 6 broken wires. The sixth strand had fan

flaws to examine the effect of wire fan

the flaws used in the experiments

 

 

Figure 4.7 Flaw and strand placement for the MS experiments

 

 

and Experimental Setup 

A total of six strands were used in this setup with varying flaw sizes. All of the strands 

long. The first strand used in the experiment was without any defects 

except with small amount of surface rust. This established a baseline measurem

experiment. The second strand had one broken wire out of the seven wires that make a 

steel strand, the third strand had two broken wires and the fourth strand had 3 broken 

wires. The fifth strand had 6 broken wires. The sixth strand had fan-out

flaws to examine the effect of wire fan-out.  Figure 4.9 shows the strands and the size of 

the flaws used in the experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and placement for the MS experiments; showing a flaw location at 
63.5 in from the of the receiver coil 
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A total of six strands were used in this setup with varying flaw sizes. All of the strands 

long. The first strand used in the experiment was without any defects 

a baseline measurement for the 

experiment. The second strand had one broken wire out of the seven wires that make a 

steel strand, the third strand had two broken wires and the fourth strand had 3 broken 

out wires with no 

out.  Figure 4.9 shows the strands and the size of 

; showing a flaw location at 
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Figure 4.8 Flaw and stand placement for the MS experiments

flaw located at 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Flaw and stand placement for the MS experiments; showing 1 broken wire 
flaw located at 63.5 in from the receiver coil. 
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; showing 1 broken wire 
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Figure 4.9 Sample of strands 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Sample of strands and flaws used in the MS experiments
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and flaws used in the MS experiments 
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4.4.2 Experiment for Cable Within the Anchorage Area 

To assess the performance of the MS method to detecting defects in strands within the 

cable anchorage zone, a model was built as shown in figure 4.10. The model consists of a 

bundle of 13 strands; each strand is constructed of 7 wires. All the strands were cut at the 

same length of 10 ft. The strands were spread out at one end and were terminated with a 

wooden block. The other end of the bundle was kept together and suspended in the air. 

The defects were placed at 30.55 in from the transmit coil or 61.08 in from the anchorage 

area. The magnet was placed under the strands about 7.63 ft away from the termination 

block. The strand was kept at a fixed height (2.5 in) from the surface of the magnet, about 

the same radius of the 5 in cable-bridge shown in the figure 4.10. A transmit/receive coil 

was placed around the strand near the magnet. The coil diameter was fixed at 5 in. This is 

to ensure that the coil fits around the 5 in diameter cable. We assumed that the strands are 

located at the center of the cable.   

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Cable-anchorage model with 13 spread out strands setup; showing bias 
magnet, transmit/receive coil and strand fracture location. 

 

Transmit/Receive Coil 

Bias Magnet 

Strand Fracture 
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CHAPTER 5  

RESULTS & DISCUSSION 
 

 

 

5.1 Introduction 

This chapter presents the results of several experiments, using the prototype MFL system 

and the cable-stayed bridge cable, to assess the capabilities and performance of the MFL 

method to detect steel loss of section. The goal of the MS experiments was to assess the 

feasibility and performance of the MS method in detecting steel loss of section within the 

anchorage area of cable-stayed bridges. 

 

5.2  MFL Laboratory Experiments 

The magnet assembly was first mounted on top of the laboratory bridge cable and 

connected to the data acquisition software. The magnet assembly was then moved to a 

known starting point on the cable to establish a reference point for the start of the scan. 

The experiments were carried out by inserting a strand, with known flaws, into the top or 

the outer copper tube in the cable. The strand at this location was located 1.5 in from the 

location of the magnetic sensors in the magnet assembly. The first inserted strand 

contained seven broken wires (complete strand fracture). The strand was inserted inside 

the copper tube until it reached a predetermined length for the location of the flaw. The 

cable was scanned with the magnet assembly manually along the length of the cable in 
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searching for flaws. The magnet assembly was moved passed the location of the flaw, 

and then stopped at the end of the cable. When the magnet reached at the end of the 

cable, data acquisition was stopped and the magnet was moved back to the start point and 

readied for the next scan. Data was collected continuously during each scan and it was 

transferred to the computer where it was saved for post processing. The data from the top 

seven Hall-effect sensors were collected and viewed in real-time while scanning the 

cable. It was very clear to see how the signal from the flaw was developing as the magnet 

moved over the defect. When the first test was completed, the strand was removed and 

the second strand, with six broken wires, was inserted in the cable. Similar to the first 

scan, the magnet was moved over the flaw starting at the beginning of the cable from the 

same reference point and ending at the end of the cable -moving exactly the same 

distance. The rest of the scanning was performed similarly for the remaining strands with 

varying defect sizes. When this part of the testing at was completed, the first strand (with 

seven broken wires) was inserted in the center copper tube (located at 2.5 in of depth) in 

the cable.  The strand was pushed inside the cable until it reached the predetermined flaw 

location, similar to the first experiment, to maintain consistent location of the flaw within 

the cable. 
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5.2.1 Effect of Seven Broken Wires at 1.5 in Depth Inside the Cable 

The results of the first scan (seven broken wires in the outer copper tube) are shown in 

figures 5.1 and 5.2. The x-axis of the graph represents the distance the magnet travelled 

during the scan. The y-axis represents the amplitude of the magnetic flux that leaked 

outside the steel. The graph shows only the vertical components of the magnetic flux; the 

flat line in the graph indicates that there is no flux leakage. Any variations in the graph 

indicate the presence of a local disturbance of the magnetic field, and possibly an 

indication of the loss of section or presence of a flaw. The graphs clearly show strong 

variations based on the magnitude of the signal amplitude indicating the present of 

disturbances near that area. Comparing the location of the signal variations on the graph 

(x-axis) and the known location of the seven broken wires (at 1.5 ft), we can draw a clear 

correlation that the signal recorded was due to the seven broken wires in the strand. 

Furthermore, when these measurements are compared to the baseline data, it’s clear that 

there are no signals recorded at this location; hence, the disturbances seen in the graph are 

due to the seven broken wires. Also, the data show that the signals recorded from all 

seven Hall-effect sensors vary in magnitude based on the location of each sensor.  The 

maximum peak-to-peak magnitude (0.9V) is observed at sensor 4 which is the closest 

sensor to the flaw. Additionally, the graph shows that the signal amplitude decreases 

from sensors that are away from sensor 4 where the smallest magnitude (0.13V) is 

recorded at sensor 1.  Also, the magnetic fluctuation decays rapidly as we move away 

from the location of the law.  

 

 



www.manaraa.com

72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0
.0

0

0
.3

0

0
.6

0

0
.9

0

1
.2

0

1
.5

0

1
.8

0

2
.1

0

2
.4

0

2
.7

0

3
.0

0

3
.3

0

3
.6

0

3
.9

0

S
ig

n
a

l 
A

m
p

li
tu

d
e

 (
V

o
lt

)

Scanning Distance (ft)

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0
.0

0

0
.3

0

0
.6

0

0
.9

0

1
.2

0

1
.5

0

1
.8

0

2
.1

0

2
.4

0

2
.7

0

3
.0

0

3
.3

0

3
.6

0

3
.9

0

S
ig

n
a

l 
A

m
p

li
tu

d
e

 (
V

o
lt

)

Scanning Distance (ft)

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0
.0

0

0
.3

0

0
.6

0

0
.9

0

1
.2

0

1
.5

0

1
.8

0

2
.1

0

2
.4

0

2
.7

0

3
.0

0

3
.3

0

3
.6

0

3
.9

0

S
ig

n
a

l 
A

m
p

li
tu

d
e

 (
V

o
lt

)

Scanning Distance (ft)

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0
.0

0

0
.3

0

0
.6

0

0
.9

0

1
.2

0

1
.5

0

1
.8

0

2
.1

0

2
.4

0

2
.7

0

3
.0

0

3
.3

0

3
.6

0

3
.9

0

S
ig

n
a

l 
A

m
p

li
tu

d
e

 (
V

o
lt

)

Scanning Distance (ft)

Figure 5.1 MFL signals recorded from sensors 1 through 4 for seven broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to the 

defects, i.e., data from sensor 4 (d). 

(b) (a) 

(c) (d) 
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Figure 5.2 MFL signals recorded from sensors 5 through 7 for seven broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 
defects, i.e., data from sensor 5 (a). 

(a) (b) 

(c) 
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5.2.2 Effect of Six Broken Wires at 1.5 in Depth Inside the Cable 

In this experiment the strand with seven wires broken was removed and a strand with 6 

broken wires was inserted in the top or the outer copper tube in the cable. Similar to the 

first scan, the magnet was moved over the flaw location traveling exactly the same 

distance on the cable. The signals recorded for the defects of the 6-broken wire-strand are 

shown in figure 5.3 and 5.4. The signals from all seven sensors are almost identical to the 

defect signals of the seven-broken-wire strand, except that the peak-to-peak signal 

amplitude is lower. The data shows that the maximum signal amplitude recorded is about 

0.8V; which corresponds to sensor 4 and sensor 5, as expected. Furthermore, the 

magnitude of the signal from sensor 4 and 5 is identical (0.8V), because the flaw is 

located exactly between the two sensors. The data also show that sensors 3 and 6 (which 

are adjacent to sensor 4 and 5 respectively) produced the next highest signal amplitude 

levels when compared to the signals from sensor 4 and sensor 5. It is also clear from the 

graphs that the signal from sensor 3 is identical to the signal from sensor 6 by symmetry. 

Similarly, the signals for sensor 2 and 7 are identical. However, the smallest signal 

recorded is from sensor 1, with a magnitude of 0.10V. This was also expected, since 

sensor 1 is the farthest from the location of the defects, hence it will sense much smaller 

magnetic field than the rest of the sensors. 
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Figure 5.3 MFL signals recorded from sensors 1 through 4 for six broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 

defects, i.e., data from sensor 4 (d). 
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Figure 5.4 MFL signals recorded from sensors 5 through 7 for six broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 

defects, i.e., data from sensor 5 (a). 
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5.2.3 Effect of Five Broken Wires at 1.5 in Depth Inside the Cable 

In this experiment the strand with six broken wires was removed and a strand with five 

broken wires was inserted in the outer copper tube in the cable. The data for the defects 

of the five broken wires in the strand is shown in figure 5.5 and figure 5.6. Consistent 

with the previous two experiments for 7-wires and 6-wires broken strands, the maximum 

signal is recorded from sensors 4 and 5. As seen from the graph, the peak-to-peak 

magnitude of the signal for sensors 4 and 5 is also identical- about 0.7V. The signals from 

the rest of the sensors follow the pattern as in the previous two experiments, where sensor 

1 shows the smallest magnitude of about 0.08V peak-to-peak. The symmetry between 

sensor 3 and 6, and 2 and 7 is also observed. 
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Figure 5.5 MFL signals recorded from sensors 1 through 4 for five broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 
defects, i.e., data from sensor 4 (d). 
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Figure 5.6 MFL signals recorded from sensors 5 through 7 for five broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 
defects, i.e., data from sensor 3 (a). 
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5.2.4 Effect of Four Broken Wires at 1.5 in Depth Inside the Cable 

In this experiment the strand with five-broken-wires was removed and a strand with 4 

broken wires was inserted in the outer copper tube in the cable. The data for the defects in 

the strand with 4-broken wire is shown in figure 5.7 and figure 5.8. Consistent with the 

previous results, the maximum signal is recorded from sensors 4 and 5. As seen from the 

graph, the peak-to-peak magnitude of the signal for sensors 4 and 5 is also identical- 

about 0.5V. The signals from the rest of the sensors follow the pattern as in the previous 

experiments, where, sensor 1 shows the smallest magnitude of about 0.05V peak-to-peak. 

The symmetry between sensor 3 and 6, and 2 and 7 is also observed. 
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Figure 5.7 MFL signals recorded from sensors 1 through 4 for four broken wires. Larger 
signal amplitude values are resulted from sensors that are located closer to defects, i.e., 
data from sensor 4 (d). 
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Figure 5.8 MFL signals recorded from sensors 5 through 7 for four broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 
defects, i.e., data from sensor 3 (a). 
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5.2.5 Effect of Three Broken Wires at 1.5 in Depth Inside the Cable 

The data for the defect in a strand with three broken wires are shown in figures 5.9 and 

figure 5.10. As seen from the graph, the peak-to-peak magnitude of the signal for sensors 

4 and 5 is almost identical- about 0.35 V. The signals from the rest of the sensors follow 

the pattern as in the previous experiments, where, sensor 1 shows the smallest magnitude 

of about 0.04V peak-to-peak. The symmetry between sensor 3 and 6, and 2 and 7 is also 

observed. 
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(c) (d) Figure 5.9 MFL signals recorded from sensors 1 through 4 for three broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 
defects, i.e., data from sensor 4 (d). 
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Figure 5.10 MFL signals recorded from sensors 5 through 7 for three broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 

defects, i.e., data from sensor 3 (a). 
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5.2.6 Effect of Two Broken Wires at 1.5 in Depth Inside the Cable 

The data for the defects for the two broken wires strand is shown in figures 5.11 and 

figure 5.12. As seen from the graph, the peak-to-peak magnitude of the signals from 

sensors 4 and 5 is almost identical- about 0.3V. The signals from the rest of the sensors 

follow the pattern as in the previous experiments, where, sensor 1 shows the smallest 

magnitude of about 0.03V peak-to-peak. The symmetry between sensor 3 and 6, and 2 

and 7 is also observed. 
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Figure 5.11 MFL signals recorded from sensors 1 through 4 for two broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 
defects, i.e., data from sensor 4 (d). 
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Figure 5.12 MFL signals recorded from sensors 5 through 7 for two broken wires. 
Larger signal amplitude values are resulted from sensors that are located closer to 

defects, i.e., data from sensor 3 (a). 
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5.2.7 Effect of One Broken Wire at 1.5 in Depth Inside the Cable 

In the last experiment at 1.5 in depth a strand with 1 broken wire defect was inserted in 

the outer copper tube in the cable. The results for this experiment are shown in figure 

5.13 and figure 5.15. As seen from the graph, the peak-to-peak magnitude of the signals 

for sensor 3 and 4 is almost identical -about 0.06V. This is slightly different than the 

results from previous experiments, which is probably due to an operating error where in 

moving the magnet assembly shifted slightly causing a shift in the proximity of the 

sensors to the flaw location. Similarly, the signals from the rest of the sensors follow the 

same pattern, where the smallest signal is now recorded from sensor 7 at about 0.01 V. 

Also, it is very clear from the graph of sensor 1 and sensor 7 that the signal is relatively 

very small and that it was difficult to identify the signal where the signal suffers some 

degradation. The results of the experiments are summarized in figure 5.15. The graph 

shows that the MFL system offers good response and sensitivity to the size of flaws 

varying from 1-broken wire to 7-broken wires in a strand. 
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Figure 5.13 MFL signals recorded from sensors 1 through 4 for one broken wire. 
Larger signal amplitude values are resulted from sensors that are located closer to 
defects, i.e., data from sensor 4 (d). 
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Larger signal amplitude values are resulted from sensors that are located closer to 

defects, i.e., data from sensor 3 (a).
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Figure 5.15 Relationship between the magnitude of the MFL signal and flaw size 
(number of broken wires). 
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5.3  MS Laboratory Experiments on Single Strand 

 

5.3.1 Baseline Measurements with no Defect 

The first experiment was conducted on a single strand with no flaws to obtain baseline 

measurements, as seen in figure 5.16 and figure 5.17. The horizontal scale in figure 5.16 

is the time in milliseconds and the vertical scale is the signal magnitude in volts. The time 

scale is referenced to the start of the transmitted wave (point P), shown in the far left side 

of the graph.  The graph shows the acquired signal taken over a 6 msec period. The 

reflection from the near-side end of the strand is shown at point E1 with a signal 

magnitude of 2.2 Vp-p. Point E2 is at reflected signal from the far-side end of the strand 

and E11 indicates reflections due to round trip waves initiated from the near-side end 

reflection. The location of the strand-end was verified by measuring the time it took for 

the incident wave to travel a round-trip distance from the transmitter coil to the end of the 

strand and back to the receiver coil. The velocity of wave propagation in the steel is 

assumed to be 16,978.3 ft/sec. 
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Figure 5.16 Wave reflections from the baseline strand with no flaws.  P is the initial 
transmitted pulse, E1 is the reflection from the near-side end of the strand, E2 is the 
reflection from the far-side end of the strand, and E11 is at the round trip wave 
propagation initiated from the near-side end reflection. 
 

 

 

 

 

 

Figure 5.17 A 7-wire strand with no flaws used for baseline measurements. 
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5.3.2 Effect of One-Broken-Wire Defect 

The second experiment was conducted on a strand with one broken wire as defect. The 

acquired signal is shown in figure 5.18 and the defect is shown in figure 5.19.  Point D1 

indicates the signal reflection from the one broken wire defect. The magnitude of the 

signal is 0.6 Vp-p, which is slightly larger than the base line signal of 0.25 Vp-p. E1 and 

E2 are the signal reflections from the near-side end and the far-side end of the strand, 

respectively. 

 

 

Figure 5.18 Wave reflections from the strand with one-broken-wire defect. P is the initial 
transmitted pulse; D1 is the signal reflection from the defect. E1 is the reflection from the 
near-end of the strand; E2 is the reflection from the far-end of the strand. 
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Figure 5.19 
 

The location of the one-

from Figure 5.18 and using the following equation to calculate the distance:

D=V*T 

Where, D is the distance of the defect measured from the location of the transmit

in meters. V is the velocity of the longitudinal wave 

trip time for longitudinal wave to travel from the transmit coil to the defect in 

milliseconds. From figure 5.18, T is measured from the center of the defects signal (D1) 

to the center of the transmitted wave (P).

T=1.123-0.50=0.623 msec

D= (0.623 msec*16,978.3

The calculated location of the defect 

the defect on the strand from the setup in figure 4.7.

 

 

Figure 5.19 7-wire strand with one-broken-wire defect. 

-broken-wire defect was verified by measuring the time at D1 

from Figure 5.18 and using the following equation to calculate the distance:

Where, D is the distance of the defect measured from the location of the transmit

e velocity of the longitudinal wave at 16,978.3 ft/sec and T is the round 

trip time for longitudinal wave to travel from the transmit coil to the defect in 

milliseconds. From figure 5.18, T is measured from the center of the defects signal (D1) 

er of the transmitted wave (P). 

msec 

978.3 ft/sec)/2=63.46 in 

The calculated location of the defect (63.46 in) very well matches the physical location of 

the defect on the strand from the setup in figure 4.7. 
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wire defect was verified by measuring the time at D1 

from Figure 5.18 and using the following equation to calculate the distance: 

Where, D is the distance of the defect measured from the location of the transmitting coil 

and T is the round 

trip time for longitudinal wave to travel from the transmit coil to the defect in 

milliseconds. From figure 5.18, T is measured from the center of the defects signal (D1) 

very well matches the physical location of 
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5.3.3 Effect of Two-Broken-Wire Defect 

The third experiment was conducted on a strand with a two-broken-wire defect. The 

result of the acquired signal is shown in figure 5.20 and the defect is shown in figure 

5.21.  Point D1 is the signal reflection from the two-broken-wire defect with a signal 

amplitude of 1.0 Vp-p. E1 and E2 are the signal reflections from the near-side end and 

the far-side end of the strand, respectively. The signal magnitude from the two-broken-

wire defect is larger than the one-broken-wire defect. This is expected since the two-

broken-wire defect is 100% larger than the one-broken-wire, as such, more signal is 

reflected from the defect. The rest of the wave continued to propagate past the defect, 

however, with less energy since part of the energy was reflected at the defect.  Hence, E1 

magnitude is slightly smaller than E1 from the one-broken-wire experiment. 
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Figure 5.20 Wave reflections from the strand with two-broken-wire defect. P is the initial 
transmitted pulse; D1 is the signal reflection from the defect. E1 is the reflection from the 
near-side end of the strand; E2 is the reflection from the far-side end of the strand. 
 

 

 

 

 

 

 

Figure 5.21 The 7-wire strand with two-broken-wire defect. 
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5.3.4 Effect of Three-Broken-Wire Defect 

The 4th experiment was conducted on a strand with a three-broken wire defect. The result 

of the acquired signal is shown in figure 5.22 and the defect is shown in figure 5.23.  

Point D1 indicates the signal reflection from the three-broken wire defect with a signal 

amplitude of 1.8 Vp-p. E1 and E2 are the signal reflections from near-side end and far-

side end of the strand, respectively.  Consistent with the previous results, the magnitude 

of the reflected signal from the defect D1 is larger compared to two-broken-wire defect 

while E1 magnitude has decreased. 

 

 

Figure 5.22 Wave reflections from the strand with the three-broken-wire defect. P is the 
initial transmitted pulse; D1 is the signal reflection from the defect. E1 is the reflection 
from the near-side end of the strand; E2 is the reflection from the far-side end of the 
strand. 
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Figure 5.23 7-wire strand with three-broken-wire defect. 
 

5.3.5 Effect of Six-Broken-Wire Defect 

The fifth experiment was conducted on a strand with a six-broken wire defect. The result 

of the acquired signal is shown in figure 5.24 and the defect is shown in figure 5.25.  

Point D1 indicates the signal reflection from the six-broken-wire defect with a signal of 

4.0 Vp-p. E1 and E2 are the signal reflections from near-side end and far-side end of the 

strand, respectively. The data shows that the majority of the wave was reflected from the 

six-broken wire defect while a small portion of the transmitted signal propagated to the 

far-end of the strand. 
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Figure 5.24 Wave reflections from the strand with the six-broken-wire defect. P is the 
initial transmitted pulse; D1 is the signal reflection from the defect. E1 is the reflection 
from the near-side end of the strand; E2 is the reflection from the far-side end of the 
strand. 

 
 

 

 

 

 

Figure 5.25 7-wire strand with six-broken-wire defect. 
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The amplitude values for the reflected signals from the experiments were plotted as 

shown in figure 5.26. The graph shows that the amplitude of the reflected signal is 

proportional to the size of the defect (or the number of broken wires). This verifies that 

the system is responsive to the size of the defect and is capable of detecting defects with 

varying sizes. 

 

 

 

 

 

Figure 5.26 Graph to demonstrate the relationship between the magnitude of the reflected 
signal and the size of the defect. 
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5.4 MS Lab Experiments on Simulated Anchorage Area 

 

5.4.1 Baseline Measurements with no Defects 

The first experiment was conducted on the 13-strands anchorage model with no flaws to 

obtain baseline measurements, as seen in figure 5.27. The graph shows the acquired 

signal over a 1.5 msec period. The horizontal scale is the time in milliseconds and the 

vertical scale is the signal amplitude in volts. The time scale is referenced to the start of 

the transmitted wave (point P), shown in the far left side of the graph. The reflection from 

near-side end of the strand is shown at point E1 with signal amplitude of 11.0 Vp-p. The 

reflection from the far-side end of the cable is not shown here, since the defects are 

placed between the transmitting coil and the near-side end of the cable. Figure 5.28 

shows the 13-strands spread out and anchored to a wooden termination plate to simulate 

the real cable anchorage area. 
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Figure 5.27 Wave reflections from the 13-strands anchorage area no defects (baseline 
measurements). P is the initial transmitted pulse; E1 is the reflection from the near-side 
end of the cable at the anchorage area.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.28 13-fan-out strands anchorage area. 
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5.4.2 Effect of One-Broken Strand Defect 

  
The second experiment was conducted on the cable within the anchorage area with a one-

broken-strand defect. The acquired signal is shown in figure 5.29 and the defect is shown 

in figure 5.30.  Point D1 is the signal reflection from the one-broken-strand defect. The 

magnitude of the signal is 0.9 Vp-p, which is slightly larger than the base line signal of 

0.5 Vp-p. E1 indicates the signal reflections from near-side end of the cable in the 

anchorage area. E1 signal amplitude is 9.5 Vp-p, which is slightly lower than the 

amplitude from the base-line measurements. Similar to the single-strand experiments, this 

is expected because a part of the transmitted waves was reflected at the defect and the rest 

of the waves propagated to the end of the cable in the anchorage area.  

 

 
Figure 5.29 Wave reflections from the 13-strands anchorage area with one-broken-strand 
defect. P is the initial transmitted pulse; D1 is the signal reflection from the defect. E1 is 

the reflection from the near-side end of the cable  
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Figure 5.30 One-broken strand defect at the anchorage area. 
 
 
The location of the one-broken-strand defect was verified by measuring the time at D1 

from Figure 5.29 and using the following equation to calculate the distance: 

D=V*T 

Where, D is the distance of the defect measured from the location of the transmit coil in 

meters. V is the velocity of the longitudinal wave 16,978.3 ft/sec and T is the round trip 

time for longitudinal wave to travel from the transmitting coil to the defect in 

milliseconds. From figure 5.29, T is measured from the center of the defects signal (D1) 

to the center of the transmitted wave (P). 

T = 0.50-0.20 = 0.30 msec 

D = (0.30 msec*16,978.3 ft/sec)/2 = 30.55 in 

The calculated location of the defect (30.55 in) matched very well with the physical 

location of the defect (30.55 in) within the anchorage area from the setup in figure 4.10. 
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Similarly E1 was verified to be the reflection from the anchorage area by measuring the 

time between P and E1 from figure 5.29 and repeat the distance calculations as follows: 

T = 1.10 - 0.20 = 0.90 msec 

D = (0.90 msec*16,978.3 ft/sec)/2 = 7.64 ft 

The calculated location for E1 (7.64 ft) matched very well with the physical location of 

the anchorage area from the setup in figure 4.10. 

 
 
 

5.4.3 Effect of Two-Broken-Strand Defect 

The 3rd experiment was conducted on the anchorage area with a two-broken-strand 

defect. The acquired signal is shown in figure 5.31. Point D1 indicates the signal 

reflection from the three-broken-strand defect. The magnitude of the signal is 1.8 Vp-p, 

which is slightly larger than the signal reflection from on-broken-strand defect of 0.9 Vp-

p. E1 is the signal reflections from near-side end of the cable within the anchorage area. 

E1 signal amplitude is 8.8 Vp-p, which is slightly lower than that from the base-line 

measurement. Similar to the single-strand experiments, this is expected because a part of 

the transmitted wave was reflected at the defect and the remaining part of the waves 

propagated to the end of the cable within the anchorage area.  
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Figure 5.31 Wave reflections from the 13-strands anchorage area with two-broken strand 
defect. P is the initial transmitted pulse; D1 is the signal reflection from the defect. E1 is 

the reflection from the near-side end of the strand 
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5.4.4 Effect of Three-Broken-Strand Defect 

The 4rd experiment was conducted on cable within the anchorage area with a three-

broken-strand defect. The acquired signal is shown in figure 5.32. Point D1 indicates the 

signal reflection from the three-broken-strand defect. The magnitude of the signal is 2.6 

Vp-p, which is slightly larger than the signal reflection from the two-broken-strand defect 

of 0.1.8 Vp-p. E1 indicates the signal reflections from the near-side end of the cable 

within the anchorage area. E1 signal magnitude is 8.4 Vp-p, which is slightly lower than 

that from the measurement for the two-broken-strand defect. Similar to the single-strand 

experiments, this is expected because a part of the transmitted wave was reflected at the 

defect and the remaining part of the waves propagated to the end of the cable within the 

anchorage area.  

 

 
Figure 5.32 Wave reflections from the 13-strand anchorage area with three-broken-strand 
defect. P is the initial transmitted pulse; D1 is the signal reflection from the defect. E1 is 

the reflection from the near-side end of the strand 
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The experimental results in the previous sections have shown that the MFL method is 

capable of detecting loss of section due to corrosion defects of varying sizes. The results 

on a real cable have shown that the MFL is capable of detecting corrosion defects inside 

the cable; the defects range from a single broken wire to several broken wires. 

Considerable success has been achieved in detecting steel defects from a single broken 

wire to seven broken wires (full strand fracture), particularly at the surface of the steel 

(about 1.5 in. depth from the surface of the cable). However, limited success has been 

achieved in detecting defects at the center of the steel cable, limited to detecting the 7 

broken wires defect only. This suggests increasing the strength of the magnetic field to 

ensure that sufficient flux lines reach to the center of the cable or using magnetic sensors 

with higher sensitivity. Also, the prototype MFL system was built based on flat 

rectangular magnets and, unfortunately, it can only cover a portion of the circumference 

of the cable. As such, it is necessary to rotate the magnets around the cable and repeat the 

scans for the entire length of the cable several times to cover the full volume of the cable. 

The experiments were carried out on single isolated defects (defects that are far from 

each other). However, when defects were very close to each other, it was difficult to 

visually distinguish the MFL signal for each individual defect. For example, the presence 

of a large defect next to relatively small defect may mask the signal from the small 

defect, which may alter the shape of the signal of the large defect. This may suggest the 

need for more sophisticated signal processing or pattern recognition techniques to 

improve defect detectability.  
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To verify the accuracy of the mathematical model of the MFL signal discussed in chapter 

3, the MFL signals obtained from the different sizes of defects were compared to the 

mathematical model. The comparison showed that signal shape from the defects is in 

agreement with the mathematical model. An example of MFL signal acquired from one 

of the tests and the signal obtained from the mathematical model from equation (3.2) is 

shown in Figure 5.33.  

 

 

 

 

 

 

 

 

 
Figure 5.33 Acquired MFL signal and predicated signal based on the mathematical model 
in equation (3.2). 
 

Also, comparing the shape of the MFL signal obtained from different sizes of defects, but 

the same type (cylindrical), shows that the shape of the signal is very similar; the peak-to-

peak magnitude of the signal and the peak-to-peak distance is slightly different, but the 

overall shape of the signal is almost identical. This suggests that the MFL is capable of 

producing a unique shape of signal that is unique to the shape of the defects. 
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Similar to the MFL experiments, a considerable success using the MS method has been 

achieved in detecting steel defects from a single broken wire to seven broken wires on 

one strand sample. The MS results showed clearly the reflections from the end of the 

wire/strand as well as the reflections from the defects. The MS experiments carried out 

on a similar anchorage area of 13 strands showed that the MS is capable of detecting steel 

defects from a single to several broken strands. However, it was difficult to visually 

distinguish the signal reflection from the near-end of the cable and signal reflected from 

defects that are very close to the end of the cable. This may suggest increasing the 

frequency of the transmitted signal to improve spatial resolution. However, increasing the 

frequency may increase the signal attenuation considerably due to skin-depth effect; if a 

conductor is carrying an alternating current, the current tends to flow at the surface of the 

conductor and the magnitude of the current decrease exponentially with the conductor 

depth. The results from the experiments have also showed that no significant attenuation 

of the transmitted signal has been observed. This is not necessarily the case in a real 

cable; steel in a real anchorage area of a cable is usually covered with grout or oil type of 

material. The MS signal interaction at the boundary of the material and the steel could 

have significant attenuation effect, especially if the transmitter coil of the MS system is 

placed far away from the anchorage area. The MS signals obtained showed signal 

reflections from the defects and the anchorage area side of the cable, but it also showed 

the signal reflections from the far end of the cable. On a real cable this may not 

necessarily be the case, as the far end of the cable is further away from the anchorage 

area. However, the presence of defects on the far side of the cable may result in signal 

reflections that appear on the MS data. This makes it difficult to distinguish the location 

of the defect and may lead to miscalculation of the exact location of the defect. As such, a 
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more sophisticated arrangement of the transmitter coil is necessary to control the 

directivity of the MS signal (i.e., allow the MS signal to be transmitted in the direction of 

the anchorage area, while inhibiting the signal from travelling in the opposite direction). 

Also, comparing the shape of the MS signal obtained from different sizes of defects, but 

same type (cylindrical), it’s clear that the shape of the signal is very similar and related to 

the transmitted signal; the peak-to-peak magnitude of the signal and the peak-to-peak 

time is slightly different, but the overall shape of the signal is almost identical. This may 

suggest that the MS is capable of producing a unique shape of signal that is unique to the 

shape of the defects. When the number of transmitted pulses was increased from one to 

multiple pulses, an increase in transmitted energy was observed; however, the spatial 

resolution suffered considerably, as seen Figure 5.24.  

 

To verify the accuracy of the mathematical model of the MS signal discussed in chapter 

3, the MS signals obtained from the different sizes of defects were compared to the 

mathematical model. The comparison showed that the signal shape from the defects is in 

agreement with the mathematical model. An example of an MS signal acquired from one 

of the tests and the signal obtained from the mathematical model from equation (3.14) is 

shown in Figure 5.34. 
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Figure 3.34 Acquired MS signal and predicated signal based on the mathematical model 
in equation (3.14). 

 
The results from the MFL experiments and MS experiments have been compared to 

similar type of work [30, 46-51, 79, 80, 81, 82] and the results are in agreement. 

However, the magnitudes of signals obtained are different due to difference in setup and 

system parameters.
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CHAPTER 6  

PROPOSED SYSTEM DESIGN 
 

 

6.1  Introduction 

As shown in the previous chapter, a considerable level of success can be achieved in 

detecting steel defects using the Magnetic Flux Leakage (MFL) and the Magnetostrictive 

(MS) methods. A prototype MFL system based on a set of flat rectangular magnets was 

used in this study to perform the required experiments. However, the flat magnets can 

only cover a portion of the circumference of the cable. As such, it is necessary to rotate 

the magnets around the cable and repeat the scans for the entire length of the cable 

several times to cover the full volume of the cable. This is not practical in the field, 

especially for long bridge cables, where the length of the main cable may exceed 1,400 ft. 

To address this limitation, a new design layout for the magnet and sensors is proposed in 

this chapter. Also, proposed in this chapter is a system design that integrates both the 

MFL and the MS methods.  

 

6.2  Proposed System Design 

The proposed system design is based on using circular magnets that encapsulate the cable 

with Hall-effect sensors that are arranged along the circumference of the cable, as seen in 

figure 6.1.  The magnets will not only provide a complete coverage of the circumferences 

of the cable, but it will also provide a uniform magnetic field as well. Also, the shown 

arrangement of the Hall-effect sensors will provide a 360° field of view for the detection 
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of magnetic flux fluctuations due to the presence of defects in the cable. The circular 

magnets will not only provide the static magnetic field needed for the MFL method, they 

will also serve as the bias magnets that are needed for the MS method. Similarly, the 

Hall-effect sensors could have a dual-use, where they can detect both the MFL and MS 

signals.  

 

 

Figure 6.1 Integrated MFL/MS System; arrangement of MS coils and Hall-effect sensors 
with the circular magnets 
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6.3  Proposed Circular Magnets Design 

The permanent magnets assembly of the proposed system in this research consists of two 

main parts: two pairs of half-circular magnets and a cylindrical steel sleeve that connects 

the magnets together, as seen in figure 6.2 The proposed magnets geometry is intended to 

wrap around the steel cable for practical operation and optimal magnetization of the 

bridge cables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Permanent Circular Magnets Layouts. 
 

 

This arrangement and orientation of the magnets provide the best continuous and uniform 

coverage of the magnet field around the bridge cables and an optimal linearity of the 

magnetic flux inside the cables. Each adjoining pair of magnets have the same 

magnetization polarity. The second pair of magnets has a similar arrangement, but with 
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an opposite magnetization direction to the first pair. In other words, the magnetization 

direction in the first pair of magnets is such that the north pole is at the inner surface and 

the south pole is at the outer surface of the magnets. The second pair of magnets has an 

opposite polarity, where the south pole is at the inner surface and the north pole is at the 

outer surface of the magnets. With this arrangement, the magnetic flux direction is 

oriented and concentrated in the Z-direction (i.e. inside the cable along the longitudinal 

direction). Each half-circular magnet will be made of N4516 Grade Magnetic 

Neodymium Iron Boron Nd-Fe-B material. The B-H curve for the proposed magnets is 

shown in Figure 6.3 [21].  B is the magnetic flux density in Guass (G) and H is the 

magnetic field strength measured in Orestad (Oe).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3 Typical H-B curves for the permanent magnets proposed in this study 
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The above B-H curve clearly demonstrates that the relationship between the B and H is 

not a linear one and that the performance of the magnets differs based on the 

environmental conditions, such as the temperature. The calculated H and B values for the 

system is approximately 5,000 Oe and 14,000 G respectively, based on the operating 

point and load line of the system, as shown in figure 6.3.  The working point is the point 

on the BH curve where the values of B and H correspond to the actual working condition 

of the magnet. The load line is drawn starting from the origin of the BH curve and ending 

at the operating point. The length-to-diameter ratio (LDR) of the magnet is used to 

establish the load line and operating point. Operating temperature of 68° F is assumed. 

The length-to-diameter ratio of the system is calculated as follows: 

LDR= L/D = 13 in/4.5 in = 2.89 

Where, 

L = the length of the magnet system (in) 

D = the diameter of the magnet system (in) 

 

The conceptual design of the magnets is shown in Figure 6.4. Factors that have been 

taken into consideration for the system design are size, weight, strength, layout and 

workflow, such that an optimal design can be achieved. Also, the design included 

provisions to ensure that a homogenous induced magnetic field could be achieved at any 

time inside the bridge cable between the two magnet pairs.  This is important, as it allows 

accurate measurements of the magnetic field variations due to the presence of defects in 

the bridge cables.   

 



www.manaraa.com

118 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Conceptual design of the magnet 
 

The proposed MFL system design was achieved based on performing a numerical 

simulation using the ANSYS finite element software.  The simulation modeling is based 

on assuming closed circular-magnets arranged around the steel cable with a steel sleeve.  

No gap has been included in the model between the edges of the magnet pieces. During 

the actual system assembly a small gap at the edges of the magnets may be present as 

mechanical devices and hinges will be used to bring together and hold the magnet pieces 

in place.  ANSYS is a commercially available software suite that is used for modeling 

and analyzing engineering problems based on the Finite Element analysis method. The 

software is capable of performing different types of analyses such as electromagnetic, 

static magnetic, structural stress, thermal, fluid, and other types.  

The geometric models for the MFL system were created in AutoCAD for ease of use and 

editing. The models were then imported to ANSYS for static magnetic field analysis. 
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Figures 6.5 to 6.11 show the results of the numerical analysis for the proposed MFL 

system based on using lightweight permanent magnets. Figures 6.9 to 6.11 show 

homogenous magnetic field density (B) of 6,800 G within the field of view (FOV) of the 

magnets. FOV is the area between the magnets where magnetic field is homogenous 

(variations in the B values is less than 10%). The B value (6,800 G) is calculated based 

on averaging the maximum and minimum values of the field, within the FOV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Magnets without the sleeve and showing magnetization direction 
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Figure 6.6 Magnets; showing the flow direction for the magnetic flux (B) 

 

Figure 6.7 Magnets; showing the direction of the magnetic flux (B) inside the cable along 
the longitudinal direction 
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Figure 6.8 Magnets; showing the direction of the magnetic flux (B) on the surface of the 
sleeve 

 

Figure 6.9 Magnets; showing the total flux density (B). The B value (6,800 G) is 
calculated based on averaging the maximum and minimum values of the field, within the 

FOV. 
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Figure 6.10 Magnets; showing homogeneity of the magnetic flux (B) in the Z direction, 
within the field of view - cross sectional view is shown 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Magnets; showing homogeneity of the magnetic flux (B) in the Z direction, 
within the field of view - longitudinal sectional view is shown 

 

Homogenous Field of View (FOV) for B field 

Homogenous Field of View (FOV) for B field 
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The flaws in the steel cable have been modeled as cross-sectional losses of the steel core 

with different diameter as seen in Figure 6.12 and 6.13. These modeled flaws have been 

used to simulate physical losses of section in the steel cable. They have also been used to 

analyze the magnitude of the magnetic flux generated due to the presence of these flaws 

in the steel.  The results were used to determine various design parameters and 

performance requirements for the sensors to detect magnetic flux leakage due to the 

presence of defects in steel cables.   

 

 

 

 

 

 

 

 

Figure 6.12 Magnets; showing different sizes of flaws and locations inside the cable- 
cross sectional view is shown 

 

 

 

 

 

 

 

 
 
 

Figure 6.13 Magnets; showing different sizes of flaws and locations inside the cable- 
longitudinal sectional view is shown 

Modeled Flaws 

Modeled Flaws 

F2 
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The numerical simulation results for 7-wire broken strand, 5-wire broken strand, 3-wire 

broken strand and 1-wire broken strand modeled flaws are shown in Figures 6.14-6.17 

respectively.  The location of the flaw (F2 labeled on Figures 6.12 and 6.13) has been 

kept at 1.5 in depth from the surface of the cable. The analyses show that the maximum 

magnetic flux density for 7-wire broken strand flaws is 18.21 G. The maximum magnetic 

flux density for 5-wire broken strand flaw is 14.13 G. Figure 6.16 shows the flux density 

for 3-broken wire flaw with maximum magnitude of 7.06 G. The result of the simulation 

for 1-broken wire shows magnetic flux density with 1.2G maximum magnitude. 

Performance gain of using the proposed system over the flat magnets has been calculated. 

The magnetic flux density for 7-broken wire obtained in chapter 5, Figure 5.1(d), has 

been calculated using known system electronic signal gain and sensitivity of the Hall-

effect sensor as follows: 

Hall-effect sensor sensitivity = 10 uV/G 

The electronic circuit gain (signal amplification) = 14000 

Maximum signal amplitude from Figure 5.1 (d) = 0.9 V 

The magnetic flux density can be calculated as follows: 

Flux density = signal amplitude (V)/[signal gain/Hall-effect sensor sensitivity (uV/G)] 

Flux density = 0.9 V/[14000/(10 uV/G)] = 6.43 G 

Performance gain = 18.21 G/6.43 G= 2.83 

The proposed system provides performance gain by a factor of 2.83, which is expected to 

provide better sensitivity to detect smaller flaws. 
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Figure 6.14 Magnetic flux density of MFL signal for 7-wire broken strand 
simulated flaw  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.15 Magnetic flux density of MFL signal for 5-wire broken strand 
simulated flaw  
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Figure 6.16 Magnetic flux density of MFL signal for 3-wire broken strand 
simulated flaw  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Magnetic flux density of MFL signal for 1-wire broken strand 
simulated flaw  
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6.4  Proposed MS System Design 

 

The high level block diagram and the system components of the proposed MS system are 

shown in figure 6.18.  The MFL/MS system installation on the cable is shown in figure 

6.19. In this setup, an electrical wire wound around the bridge cable is used as a 

transmit/receive coil. The oscillator function is to generate the RF electrical excitation 

signal with the desired frequency, magnitude and duration. The signal is then fed to a 

power amplifier. The amplifier is used to drive the transmit/receive coil. The RF switch 

function is to route the excitation RF pulse to the transmit/receive coil during the 

transmission state and to route the signal reflections from the cable during the receive 

state. The received signals are routed through the receive chain (a pre-amplifier, data 

acquisition hardware in a laptop) to amplify, filter and improve the signal-to-noise ratio 

(SNR). A pre-amplifier is a small electronic device that boosts the amplitude of a small 

electrical signal several times and it is usually placed near the source of the electrical 

signal to reduce the effects of electrical interference and noise background. SNR is a 

measure of signal strength relative to a background noise. SNR is usually measured in 

decibels (dB) according to the following: 

SNR = 20 log10 (Vs/Vn) 

Where Vs is the magnitude of the measured electrical signal and Vn is the magnitude of 

the noise background.  

Another option for receiving the RF signal from the cable is to use the Hall-sensors 

proposed in the MFL system. The Hall-effect sensors are arranged in a circular fashion 

around the contour of the magnets with dual functionality; detecting signals from the 

MFL system when the system is used on the main cable of the bridge and detecting signal 
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reflections in the MS system when the system is used to inspect the cable within the 

anchorage area. 

 

 

 

 

 

 

 
 

Figure 6.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.19 System installation on 
 

reflections in the MS system when the system is used to inspect the cable within the 

 

 

Figure 6.18 MS System Block Diagram 

System installation on a cable of Cable-Stayed Bridge
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reflections in the MS system when the system is used to inspect the cable within the 

Stayed Bridges 
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The numerical analyses have shown that a uniform magnetic field of about 6,800G could 

be achieved using the proposed design with a minimum size (13 in length, 9 in diameter) 

and weight (50 Ib) to maintain a practical design. Additionally, hinges can be used to 

connect the two halves of the magnet, as shown in Figure 6.20. The hinges facilitate 

opening and closing the magnet, while installing it on the cable. The hinges also provide 

a means to lock the magnet. Once the magnet is secured on the cable a system of pulleys, 

ropes and a motor can be used to move the magnets along the entire length of the cable 

during inspection using the MFL method. The system can be placed at the end of the 

cable to use the MS method to inspect the cable-anchorage area. 

 
 
 
 

 

 

 

 

 

 
Figure 6.20 Proposed System: magnets are connected using hinges to allow opening and 

locking the magnet on the cable. 
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CHAPTER 7  

 

CONCLUSION and RECOMMENDATIONS for FUTURE 

WORK  
 

 

 

7.1 Summary of Objectives and Achievements  

The research presented in this thesis is motivated by the need to design a non-destructive 

evaluation system based on Magnetic Flux Leakage (MFL) and Magnetostrictive (MS) 

methods to detect steel loss of section, i.e., from corrosion, in cables of cable-stayed and 

other types of bridges. It is necessary to be able to detect complete fractures, partial 

fractures and loss of section due to corrosions in bridge cables. It is also necessary to be 

able not only to inspect the entire free length of the bridge cables, but also to be able to 

inspect the cable length within the anchorage area. As such, this thesis has demonstrated 

the feasibility of using the MFL and MS techniques to detect loss of section in bridge 

cables and has provided a proposed design for a non-destructive evaluation system based 

on the combined MFL and MS techniques. The proposed design will enable bridge 

engineers to perform complete inspection of the bridge cables for both the free length and 

for the cable length within the anchorage area.  The proposed MFL method uses 

permanent magnets wrapped around the cable to magnetize the steel inside the cable. The 

system uses Hall-effect sensors to detect fluctuations in the magnetic field that are due to 

loss of section in steel cables, such as broken wires and sectional losses due to corrosions. 



www.manaraa.com

131 
 

 

The MFL system will be moved along the free length of the main cable of the bridge or 

scanning the cable for section losses due to fracture of corrosion. This will allow for 

inspection of the entire free length of the cable except in the anchorage area since the 

cable is embedded within concrete and it is not accessible. Accordingly, the MS method, 

is used for the inspection of the cable within the anchorage region. The MS method 

introduces a guided wave into the cable within the anchorage area while monitoring wave 

reflections from the cable end as well as from any section losses due to corrosion or 

fracture.  

 

7.2 Magnetic Flux System  

The use of MFL method has been studied and evaluated for detecting section losses in the 

bridge cables through experimental work as shown in chapters 4 and 5. A prototype 

model of the MFL system has been used. The prototype model includes a pair of 

permanent magnets, a mechanical frame and a Hall-effect sensing unit.  Also, data 

acquisition hardware for signal amplification and conditioning has been developed. 

Furthermore, data acquisition software for real-time acquisition and post-processing 

analysis has been developed. A grouted 5-inch diameter bridge cable that consists of pre-

stressing strands has been used for the MFL experiments to evaluate the system 

performance. The experimental results are shown in chapter 5. The results have shown 

that the MFL technique is capable of detecting corrosion-related defects (section loss) 

inside the cable.  These include a single broken wire within one strand to several broken 

strands. Considerable success has been achieved in detecting steel section losses from a 

single broken wire to 7 broken wires (or a complete strand fracture), particularly when 

the section loss is in a strand near the outer surface of the cable (or within about 1.5 in 
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from the surface of the cable). However, successful section loss detection at the center of 

the steel cable has been limited seven broken wires.  The current MFL system built based 

on flat rectangular magnets can only cover a portion of the circumference of the cable. As 

such, it is necessary to rotate the magnets around the cable and repeat the scans for the 

entire length of the cable several times to cover the full volume of the cable. This is not 

practical in the field, especially for long span bridges where the length of each bridge 

cable may exceed 1,400 ft. To address this limitation, a new design has been proposed in 

chapter 6. The new design is based on using two pairs of cylindrical magnets that 

encapsulate the cable with Hall-effect sensors that are arranged around the circumference 

of the cable.  It is important for the new magnet design be able to penetrate the entire 

cross section of the cable and be able to provide uniform magnetic field. Several physical 

models were studied using numerical analysis and several trade-offs have been made to 

propose a practical design layout. The final results of the numerical analysis are provided 

in chapter 6. The numerical analyses have shown that a uniform magnetic field of about 

6,800G could be achieved using the proposed design with a minimum size (13 in length, 

9 in diameter) and weight (50 Ib) to maintain a practical design. Additionally, hinges can 

be used to connect the two halves of the magnets, as shown in Figure 6.20. The hinges 

facilitate opening and closing the magnet while installing it on the cable. The hinges also 

provide a means to lock the magnet. Once the magnet is secured on the cable a system of 

pulleys, ropes and a motor can be used to move the magnets along the entire length of the 

cable during inspection using the MFL method.  
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7.3 Magnetostrictive System  

The use of the MS method has been studied and evaluated for detecting cable section 

losses in the anchorage area through experimental work as provided in chapters 4 and 5. 

A prototype model was built that was comprised of transceiver coils, power amplifiers, 

preamplifiers and signal conditioning circuits. Transmitter/receiver coils were designed 

and built to send and receive guided waves/pulses within the cable. An RF amplifier was 

built and used to amplify the RF signal from a wave generator before transmitting the RF 

pulses. Also, preamplifiers and data acquisition hardware were developed to acquire and 

amplify the reflected pulses. Further, the data was viewed on a laptop computer for real-

time inspection and it was stored for further processing. Several test samples were created 

to aid in evaluating the MS method.  These included an 8-foot single steel strand (7-

wires), simulated anchorage-area using a single strand, simulated anchorage-area using 

13 strands and an 8 ft bridge cable. The RF pulse magnitude, number of cycles and 

frequency of the RF pulse were studied. The experimental results in chapter 5 have 

shown that the MFL method is capable of detecting section losses due to corrosion in a 

single strand and multiple strands in the free length of bridge cables. The MS technique 

demonstrated that it could clearly detect reflections from the end of the wires/strands as 

well as the reflections from the fabricated section losses in wires and strands. The MS 

experiments carried out on the simulated anchorage-area of 13 strands showed that the 

MS is capable of detecting steel section losses from a single to several broken strands. 

However, it was difficult to visually distinguish between the pulses that were reflected 

from the ends of the strands/cables and those from reflections caused by section losses 

that were located near the end of the cable.  
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7.4 Future Work  

This thesis demonstrated the feasibility of using MFL and MS methods for detecting steel 

section losses in bridge cables. The results of both methods are very encouraging. 

However, the two methods can be further examined and the research can be further 

enhanced. For future work it is proposed to investigate the use of RF pulses with higher 

frequencies to improve inspection resolution, hence, detecting smaller section losses that 

are located near the end of the cables within the anchorage-area. However, other research 

has shown that increasing the RF pulse frequency will introduce challenges with 

increasing signal attenuation. It is also proposed to investigate the effect of section losses 

that are located nearby on the overall signal detection, in particular when a small defect is 

located near a large defect. Furthermore, the use of advanced signal processing 

techniques, such as correlation analysis and pattern recognition, may aid in a more 

effective signal interpretation that can improve inspection results.  A prototype system 

should be built based on the proposed design and tested on real bridge structure to 

demonstrate the effective use of the system for bridge cable inspection. 

 

 

 

 

 

 

 
 



www.manaraa.com

135 
 

 

 

REFERENCES 

[1] Florida Department of Transportation (FDOT) Report, “Post-tensioned Bridges”, 
Topic No. 700-000-000, Section 10.7, October 21, 2004. 
 
[2] A G Lichtenstein, “The Silver Bridge Collapse Recounted”, TRB, Journal of 
Performance of Constructed Facilities, vol.7, p. 249-261, 11-1993. 
 
[3] P. C. Ken, J. C. Nicholas, and W. Glenn, "Health Monitoring of Civil Infrastructures," 
Smart Materials and Structures, pp. 483, 2003.  
 
[4] A. David, "Repairs without Rivets," in Scientific American Magazine, November 
2007. 
 
[5] R. Woodward, F. Williams, "Collapse of the Ynys-Y-Gwas bridge, West 
Glamorgan," proceedings of the institutional of Civil Engineering, vol.84, pp.635-669, 
1988. 
 
[6] D. Parker, "Pacific Bridge Collapse Throws Doubt on Repair Method," New Civil 

Engineer, pp.3-4, 1996. 
 
[7] D. Parker, "Tropical Overload," New Civil Engineer, pp.18-21, 1996. 
 
 [8] Don E. Bray, Redoeric K. Stanley, Nondestructive Evaluation:  A Tool in Design, 
Manufacturing, and Service, Revised Edition, CRC Press. 
 
[9] Peter J. Shull, Nondestructive Evaluation:  Theory, Techniques, and Applications, 
2002 edition, Marecl Dekker. 
 
[10] Charles J. Hellier, Handbook of Nondestructive Evaluation, 2001 edition, McGraw-
Hill. 
 
[11] Josef Krautkrämer, Herbert Krautkrämer, Ultrasonic Testing of Materials, 3rd 
edition, Spring-Verlog. 
 
[12] Andrew Webb, Introduction to Biomedical Imaging, 2003 edition, Wiley-
Interscience. 
 
 [13] M. G. Ali, A. R. Maddocks, “Evaluation of Corrosion of Prestressing Steel in 
Concrete Using Non-destructive Techniques”, GHD Pty Ltd, Sydney. 
 
[14] Leeming, M B, Lane, J S and Wade, P J, “Post-tensioned Bridge Investigation - The 
Way Forward”, Construction/Repair, pp 193-197. 
 



www.manaraa.com

136 
 

 

[15] Stain, R T and Dixon, 5, “Inspection of Cables in Post-tensioning Bridge - What 
Techniques are Available”, Construction/Repair, January/February 1994, pp 297-300. 
 
[16] Williams, H T and Hulse, M E, “From Theory to Field Experience with Inspection 
of Post-tensioned Bridges”, Construction/Repair, pp 199-202. 
 
[17] Nagi, M and Whiting, D, “Corrosion of Prestressed Reinforcing Steel in Concrete 
Bridges: State-of-the-Art”, Concrete Bridges in Aggressive Environments, SP-15 1, ed. 
Weyers, R E, pp 17-41. 
 
[18] Anon, “Inspection of Prestressing Cables in Bridges”, Indian Concrete Journal, 
February 1987, Vol 61, No. 2, pp31-33. 
 
[19] Oral Buyukozturk, “Imaging of Concrete Structures”, NDT & E International 1998, 
Vol. 31, No.4 pp. 233-243. 
 
[20] Price, W. I. J., “Highway Bridge Inspection: Principles and Practices in Europe”, 
TABSE Symposium, Washington, 1982, Vol 38, pp 15-29. 
 
[21] Martz, H E, Schneberk, D J, Roberson, G P and Monteiro, P J, “Computerized 
Tomography Analysis of Reinforced Concrete”, ACT Materials Journal, May/June 1993, 
pp 259-264. 
 
[21] Hillemeier, B, “New Methods in the Rehabilitation of Prestressed Concrete 
Structures”, IABSE Symposium, Lisbon, 1989, Vol 57/1, pp 3 11-316. 
 
[22] Flohrer, C. and Bernhardt, B., “Detection of Prestressed Steel Tendons Behind 
Reinforcement Bars, Detection of Voids in Concrete Structures - A Suitable Application 
for Radar Systems”, International Conference on NDT in Civil Engineering, April, 1992, 
Vol 1, pp 227-234. 
 
[23] Cheng, C. and Sansalone, M., “Effects of Impact-Echo Signals Caused by Steel 
Reinforcing Bars and Voids Around Bars”, ACT Materials Journal, September/October, 
1993, pp 421-434. 
 
[24] Lin, Y. and Sansalone, M., “Detecting Flaws in Concrete Beams and Columns Using 
the Impact-Echo Method”, ACT Materials Journal, July/August, 1992, pp 3 94-405. 
 
[25] Pratt, D. and Sansalone, M., “Impact-Echo Interpretation Using Artificial 
Intelligence”, ACI Materials Journal, March/April, 1992, pp 178-187. 
 
[26] Carino, N.J. and Sansalone, M., “Detection of Voids in Grouted Ducts Using the 
Impact Echo Method”, ACT Materials Journal, May/June, 1992, pp 296-303. 
 
[27] Petersen, C. G., “Impact Echo Testing of the Injection of a Post-Tensioned Cable 
Steel Duct”, Report -German Instruments A/S, September, 1993. 
 



www.manaraa.com

137 
 

 

[28] Robert, J. L. and Brachet-Rolland, M., “Survey of Structures by Using Acoustic 
Emission Monitoring”, IABSE Symposium, Washington, 1992, Vol 39, pp 33-38. 
 
[29] Schupack, M., “Evaluation of Corrosion in Bonded and Unbonded Post-Tensioned 
Structures., How to make Today’s Repairs Durable for Tomorrow”, March 21, 1998, 
Houston, Texas. 
 
[30] Steber, G. R., Ghorbanpoor, A. and Shew, T. E., “Magnetic Field Disturbance Signal 
Processing”, Proceeding of IEEE Conference, 1989, Vol. 2, pp. 474-479. 
 
[31] Ghorbanpoor, A. and Shew, T. E., “Detection of Flaws in Bars and Cables in 
Concrete Bridge Structures”, Transportation Research Record, 1989, No. 1211, pp. 84-
91. 
 
[32] Gimmel, B., “Magnetoelastic Force Measurement in Prestressed Concrete”, TABSE 
Symposium, Lisbon 1989, Vol. 57/1, pp. 329-334. 
 
[33] Scheel, H. and Hillemeier, B., “Capacity of the Remnant Magnetism Method to 
Detect Fractures of Steel in Tendons Embedded in Prestressed Concrete”, NDT and E 

International, 1997, Vol. 30, No.4, pp. 211-216. 
 
[34] Fontana, M. G., “Corrosion Engineering”, McGraw-Hill Book Company, 1986. 
 
[35] Feliu, 5, Gonzales, J. A., Andrade, C. and Rz-Maribona, I., “Errors Introduced in the 
Guard Ring Device in the Onsite Measurement of Rebar Corrosion Rates”, Corrosion of 
Reinforcement in Concrete, Elsevier Applied Science, 1990, pp. 293-302. 
 
[36] John, D. G., Eden, D. A., Dawson J. L. and Langford, P. E., “Corrosion 
Measurements on Reinforcing Steel and Monitoring of Concrete Structures”, Corrosion-
87, Paper No. 136, San Fransisco, California. 
 
[37] Green, W. K., “Electrochemical and Chemical Changes in Chloride Contaminated 
Reinforced Concrete Following Cathodic Polarization”, Master of Science Dissertation, 
UTVHST, November 1991. 
 
[38] Suresh Bapu, R. H., Nayak, N. U., Srividya Rajagopalan, C., Srinivasan, 5., 
Rengaswamy, N. S. and Mahadeva Iyer, Y., “Monitoring of Corrosion of Prestressing 
Steel Cables in Prestressed Concrete Bridges”, Transactions of the SAEST, 1988, Vol. 
23, No. 2-3, pp. 203-206. 
 
[39] American Society for Testing Materials, “Standard Test Method for Half-Cell 
Potentials of Reinforcing in Concrete”, ASTM Standards C876-80 and C876-87. 
 
[40] Naish, C. C., Harker, A. and Carney, R. F. A., “Concrete Inspection: Interpretation 
of Potential and Resistivity Measurements”, Corrosion of Reinforcement in Concrete, 
Elsevier Applied Science, 1990, pp. 314-332. 
 



www.manaraa.com

138 
 

 

[41]. Escalante, E., “Effectiveness of Potential Measurements for Estimating Corrosion of 
Steel in Concrete”, Corrosion of Reinforcement in Concrete, Elsevier Applied Science, 
1990, pp. 28 1-292. 
 
[42] Daniels, D., “Surface-Penetrating Radar”, Electronics and Communication 

Engineering Journal, IEEE, 1996. 
 
[43] Martz, H. E., Schneberk, D. J., Roberson, G. P. and Monteiro, P. J., “Computerized 
Tomography Analysis of Reinforced Concrete”, ACT Materials Journal, May/June 1993, 
pp. 259-264. 
 
[44] Carino, N., ”The impact-Echo Method: An Overview”, NIST 

 

[45] M. Huang, L. Jiang, P. Liaw, C. Brooks, R. Seeley, D. Klarstrom, ”Using Acoustic 
Emission in Fatigue and Fracture Materials Research”, JOM, Nov. 1998, Vol. 50, No.11., 
http://www.tms.org/pubs/journals/JOM/9811/Huang/Huang-9811.html#ToC5. 
 
[46] A. Ghorbanpoor, R. Borchelt, M. Edwards, and E. Abdel Salam, “Magnetic-Based    

NDE of Prestressed and Post-Tensioned Concrete Members–The MFL System”, Federal 
Highway Administration, Publication No. FHWA-RD-00-026, May 2000. 
 
[47] A. Ghorbanpoor, G. R. Steber, and T. E. Shew, “Evaluation of Steel in Concrete 

Bridges: The Magnetic Filled Disturbance (MDF) System”, Federal Highway 
Administration, Publication No. FHWA-SA-91-026, May 1991. 
 
[48] E. Abdelsalam, “Corrolation Analysis of Flaw Signal Detected by the MFD 
System”, Master’s thesis, University of Wisconsin-Milwaukee, December, 1998. 
 
[49] Steber, G. R., Ghorbanpoor, A. and Shew, T. E., “Magnetic Field Disturbance Signal 
Processing”, Proceeding of IEEE Conference, 1989, Vol. 2, pp. 474-479. 
 
[50] Ghorbanpoor, A. and Shew, T. E., “Detection of Flaws in Bars and Cables in 
Concrete Bridge Structures”, Transportation Research Record, 1989, No. 1211, pp. 84-
91. 
 
[51] “Magnetic Flux Leakage is Powerful New Force in Bridge Inspection”, Engineering 
News-Record, Equipment Tracks & Trends; Vol. 244, No. 11; Pg. 35, March 20, 2000. 
 
[52] S. Hoole, “Artificial Neural Networks in the Solution of Inverse Electromagnetic 
Field Problems,” IEEE Trans. Magn., Vol. 29, No. 2, pp.1931–1934, Mar. 1993. 
 
[53] R. Sikora, T. Chady, and J. Sikora, “Neural Network Approach to Crack 
Identification,” Int. J. Appl. Electromagn. Mech., Vol. 9, No. 4, pp.391–398, 1997. 
 
[53] P. Ramuhalli, L. Udpa, and S. Udpa, “Neural Network Algorithm for 
Electromagnetic NDE Signal Inversion,” in Electromagnetic Nondestructive Evaluation 
(V). Amsterdam, The Netherlands: IOS, 2001, pp. 121–128. 



www.manaraa.com

139 
 

 

 
[54] R. Schifini and A. C. Bruno, “Experimental Verification of a Finite Element Model 
Used in a Magnetic Flux Leakage Inverse Problem,” J. Phys. D: Appl. Phys., Vol. 38, 
No. 12, pp. 1875–1880, Jun. 2005. 
 
[55] Z. Chen, G. Preda, O. Mihalache, and K. Miya, “Reconstruction of Crack Shapes 
from the MFLT Signals by Using a Rapid Forward Solver and an Optimization 
Approach,” IEEE Trans. Magn., Vol. 38, No. 2, pp. 1025–1028, Mar. 2002. 
 
[56] M. Yan, S. Udpa, S. Mandayam, Y. Sun, P. Sacks, and W. Lord, “Solution of 
Inverse Problems in Electromagnetic NDE Using Finite Element Methods,” IEEE Trans. 
Magn., Vol. 34, No. 5, pp. 2924–2927, Sep. 1998. 
 
[57] C. Mandache and L. Clapham, “A Model for Magnetic Flux Leakage Signal 
Predictions,” J. Phys. D: Appl. Phys., Vol. 36, No. 20, pp. 2427–2431, Oct. 2003. 
 
[58] D. Minkov, J. Lee, and T. Shoji, “Study of Crack Inversions Utilizing Dipole Model 
of a Crack and Hall Element Measurements,” J. Magn. Magn. Mater., Vol. 217, No. 1, 
pp. 207–215, Jul. 2000. 
 
[59] D. Minkov and T. Shoji, “Method for sizing of 3-D Surface Breaking Flaws by 
Leakage Flux,” NDT&E Int., Vol. 31, No. 5, pp. 317–324, 1998. 
 
[60] C. Edwards and S. B. Palmer, “The Magnetic Leakage Field of Surface Breaking 
cracks,” J. Phys. D: Appl. Phys., vol. 19, no. 4, pp. 657–673, Apr. 1986. 
 
[61] A. Joshi, L. Udpa, S. Udpa, and A. Tamburrino, “Adaptive Wavelets for 
Characterizing Magnetic Flux Lleakage Signals from Pipeline Inspection,” IEEE Trans. 
Magn., vol. 42, no. 10, pp. 3168–3170, Oct. 2006. 
 
[62] P. Ramuhalli, L. Udpa, and S. S. Udpa, “Electromagnetic NDE Signal Inversion by 
Function-Approximation Neural Networks,” IEEE Trans. Magn., Vol. 38, no. 6, pp. 
3633–3642, Nov. 2002. 
 
[63] P. Ramuhalli, L. Udpa, and S. S. Udpa, “Neural Network-Based Inversion 
Algorithms in Magnetic Flux Leakage Nondestructive Evaluation,” J. Appl. Phys., Vol. 
93, No. 10, pp. 8274–8276, May 2003. 
 
[64] W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers, 
“Space Mapping Technique for Electromagnetic Optimization,” IEEE Trans. Microw. 
Theory Tech., Vol. 2, No. 12, pp. 2536–2544, Dec. 1994. 
 
[65] J. W. Bandler, Q. S. Cheng, D. H. Gebre-Mariam, K. Madsen, F. Pedersen, and J. 
Søndergaard, “EM-Based Surrogate Modeling and Design Exploiting Implicit, Frequency 
and Output Space Mappings,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, 
PA, Jun. 2003, pp. 1003–1006. 
 



www.manaraa.com

140 
 

 

[66] J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, 
K.Madsen, and J. Søndergaard, “Space mapping: The State of the Art,” IEEE Trans. 
Microw. Theory Tech., Vol. 52, No. 1, pp. 337–361, Jan. 2004. 
 
[67] D. Echeverria and P. W. Hemker, “Space Mapping and Defect Correction,” CMAM 
The International Mathematical Journal Computational Methods in Applied Mathematics, 
vVol. 5, No. 2, pp. 107–136, 2005. 
 
[68] J. W. Bandler, S. Koziel, and K. Madsen, “Space Mapping for Engineering 
Optimization,” SIAG/Optimization Views-and-News Special Issue on 
Surrogate/Derivative-Free Optimization, Vol. 17, No. 1, pp. 19–26, 2006. 
 
[69] S. Koziel, J. W. Bandler, and K. Madsen, “A Space-Mapping Framework for 
Engineering Optimization: Theory and Implementation,” IEEE Trans. Microw. Theory 
Tech., Vol. 54, No. 10, pp. 3721–3730, Oct. 2006. 
 
[70] R. K. Amineh, S. Koziel, N. K. Nikolova, J. W. Bandler, and J. P. Reilly, “A Space 
Mapping Methodology for Defect Characterization from Magnetic Flux Leakage 
Measurements,” IEEE Trans. Magn., Vol. 44, No. 8, pp. 2058–2065, Aug. 2008. 
 
[71] R. Maryam, R. Amineh, S. Koziel, N. Nikolova, J. Reilly, “Sizing of 3-D Arbitrary 
Defects Using Magnetic Flux Leakage Measurements,” IEEE Trans. Magn., Vol. 46, no. 
4, Apr. 2010. 
 
[72] Viktorov, I. A., 1967, Rayleigh and Lamb Waves—Physical Theory and 
Applications, Plenum Press, New York, NY. 
 
[73] Achenbach, J. D., 1984, Wave Propagation in Elastic Solids, North-Holland 
Publishing Co., New York, NY.@3# Miklowitz, J., 1978, The Theory of Elastic Waves 
and Waveguides, North Holland Publishing Co., New York, NY, pp. 409–430; 1984, 
North-Holland Series in Applied Mathematics and Mechanics, eds., H. A. Lauwerier 
andW. T. Koiter. 
 
[74] Kino, C. S., 1987, Acoustic Waves: Devices, Imaging and Digital Signal Processing, 
Prentice Hall Inc., N.J. 
 
[75] Auld, B. A., 1990, Acoustic Fields and Waves in Solids, Vol. 1 and 2, Second 
edition.; Kreiger Publishing Co., FL. 
 
[76] Graff, K. F., 1991, Wave Motion in Elastic Solids, Dover Publications Inc., New 
York. 
 
[77] Nayfeh, A. H., 1995, Wave Propagation in Layered Anisotropic Media With 
Applications to Composites, North-Holland, Elsevier Science B. V., The Netherlands. 
 
[78] Rose, J. L., 1999, Ultrasonic Waves in Solid Media, Cambridge University Press. 
 



www.manaraa.com

141 
 

 

 
[79] R. Christen, A. Bergamini, M. Motavalli, “Three-Dimensional Localization of 
Defects in Stay Cables Using Magnetic Flux Leackage Methods” JNE, Vol. 22, No. 3, 
September 2003 
 
[80] A. Bergamini, “Non-destructive testing of stay cables: Field application in South 
East Asia” http://www.empa.ch/abt116 

 

 
[81] A. Bergamini, “Nondestructive testing of stay cables”, Proceedings IABSE 
Conference on suspended bridges, Seoul, Korea, 2001 
 
 
[82] H. Kwan, A. Holt, “Feasibility of under-lagging corrosion detection in steel pipe 
using the magnetostrictive sensor technique” NDT & E international, Vol. 28, No 4, pp. 
211-214, 1995 
 
 
[83] Jiang Xu *, Cheng Cheng, Xinjun Wu and Anran Ben , “A Magnetic Flux Leakage 
and Magnetostrictive Guided Wave 7 Hybrid Transducer for Detecting Bridge Cables “, 
Sensors 2011, 11, 1-x manuscripts; doi:10.3390/s110x0000x 



www.manaraa.com

142 
 

 
 

 

CURRICULUM VITAE 

 
Emad Abdelsalam 

 
 
 
 

 
Education 

   Ph.D., Engineering   
   University of Wisconsin – Milwaukee, Milwaukee, WI                

Parallel Magnetic Resonance Imaging, RF Coils, Signal and Image 
Processing, Medical systems and Instrumentation and None–
destructive Evaluation Methods 

    
1996 -1998  M.S., Electrical Engineering 
   University of Wisconsin – Milwaukee, Milwaukee, WI                           
  

1990 -1995 B.S., Electronic Engineering 
   University of Yarmouk, Irbed, Jordan 

 

  

Industrial and Academic Experience 

2010 – Present       Principal Engineer, NeoCoil 
   Waukesha, WI 

• Responsible for the design concepts and implementation of 
advanced RF coils for MR medical systems 

• Responsible for leading the design team for development of the 
mechanical and electrical  parts of the RF coils from concept to 
product release 

• Insure the RF coils products meet clinical specification and are 
compliant with FDA, ISO, IEC and other regulatory bodies and 
standards 

 

2008 – 2010          Lead System Designer, General Electric Healthcare (GEHC) 
   Waukesha, WI 

• Leading the RF coil integration team through product 
requirements development, verification and validation planning 
and execution according to GE Quality Management System 
(QMS) 

• Insured the RF coil products are compliant with FDA, ISO, IEC 
and other regulatory bodies and standards 

• Worked across functions and teams internally and externally to 
define new coils design through business need, clinical 



www.manaraa.com

143 
 

 

requirements, design feasibility, prototype evaluation, risk 
analysis/mitigation and product release 

 

2007 – 2008          Engineering Project Lead, General Electric Healthcare (GEHC) 
   Waukesha, WI 

• Responsible for leading/managing design and integration efforts 
for high profile RF coils at 3.0T and 1.5T 

• Responsible for insuring that project deliverables are meet with 
desired technical and performance contents 

• Led the team to address and resolve technical risks and 
challenges throughout the RF coils product development   

 

2005 – 2007           MR Systems Engineer, General Electric Healthcare (GEHC) 
   Waukesha, WI 

• Integrated range of RF coils such as Head, Neurovascular, 
Spine, Cardiac, Torso, Shoulder, Wrist, Knee and Foot-ankle 
coils  

• Integrated both GE and non-GE RF coils at 1.5T and 3.0T to GE 
MR scanners  

• Integrated GE flexible head coils for Interventional and surgery 
MR systems 

• Tested RF coils to insure they meet safety standards through 
integration tests such as surface temperature test, B0, B1, and 
receive field distortion tests 

• Tested RF coils to verify and validate they meet design 
requirements for performance such as SNR, IQ, coverage 
(FOV), parallel imaging and clinical applications 

• Worked with customers, marketing and field personnel to 
resolve RF coils performance issues such as image quality 
problems, coil oscillation and poor SNR 

• Provided RF coils expertise to serve as the main integrator 
between hardware, software and field service teams 

 

2004 - 2005 Lecturer, Electrical Engineering Department 
   University of Wisconsin – Milwaukee, Milwaukee, WI 

• Responsible for Electrical Engineering courses 
 

2003 - 2005 Associate Lecturer, Mathematical Sciences Department 
   University of Wisconsin – Milwaukee, Milwaukee, WI 

• Responsible for teaching Algebra courses using traditional 
classroom teaching and computer-based (ALEKS) teaching  

 

2000 - 2003 Lead Software Engineer, Robotic Vision Systems, Inc. 
   New Berlin, WI 

• Designed, developed and implemented software applications 
for automated laser/vision-based inspection and packaging 
systems 



www.manaraa.com

144 
 

 

• Defined, managed and ensured that objectives and scope of the 
software tasks are clearly defined, and approved by the 
engineering staff 

• Participated in software testing process through test review, 
validation and analysis 

• Participated in research and development of new hardware and 
software technologies 

• Enhanced machine software/hardware and saved the company 
over $70,000/year 

• Developed a smart software release plane to resolve a 
$400,000 critical deal 

• Supported manufacturing during the customer buy-off 
procedures 

• Provided software support for field service engineers 
 

1999 - 2000 Applications Engineer, Alliance Technologies Group, Inc. 
   Vernon Hills, WI 

• Developed and implemented software applications for data 
acquisition and processing, automation and measurements 

 

1997 -1999 Research Assistant, Civil Engineering and Mechanics Department 
2005 - 2006 University of Wisconsin – Milwaukee, Milwaukee, WI 

• Developed software/hardware to control a robotic machine and 
to acquire data from magnetic sensors used in Magnetic-Based 
NDE of Prestressed and Post-Tensioned Concrete Members - 
The MFL System 

 

• Developed software/hardware to control a robotic machine and 
to acquire data using wireless PDA and Labview software used 
in Magnetic-Based and Impact-Echo-Based NDE of structural 
defects 

 
1996 -1999 Teaching Assistant, Electrical Engineering Department 
   University of Wisconsin – Milwaukee, Milwaukee, WI 

• Assisted in teaching the following courses: Power electronics, 
Electronic design lab, Microwave lab, Advanced Engineering 
Mathematics and Introduction to Microprocessors 

 
 

Consulting Activities 

6/2003 -1/2004 Applications Developer for Civil Engineering and Mechanics Dept  
   University of Wisconsin – Milwaukee, Milwaukee, WI 

• Upgraded the Mechanics Lab to run advanced experiments 
using data acquisition hardware and Labview software 

 

Computer Skills 

Programming/Languages: VB.NET, VB 6.0, Java, LabVIEW and C/C++ 



www.manaraa.com

145 
 

 

Systems: Windows NT, Windows 95/98/2000/XP/Vista/7/Pocket PC 2003 and UNIX 
Software: BridgeVIEW, LookOUT, HIQ, ALEKS, AutoCAD, ANSYS and 
MATLAB 

 
 

Awards 

 Chancellor’s Graduate Student Award, 2003, 2004, 2005 and 2012 
 University of Wisconsin-Milwaukee, Milwaukee, WI 
 
 

Publications 

1. Emad Abdelsalam, Al Ghorbanpoor “MFL System for Detection of Defects in 
Cables of Bridge Structures” IEEE trans., 2013 (in Progress) 
 

2. A. Ghorbanpoor,  Emad Abdelsalam “Corrosion Detection in Tendons of 
Segmental Concrete Bridges” 2012 
 

3. Bo Liu, Leslie Ying and Emad Abdelsalam, “Improved Spiral Sense 
Reconstruction Based On Multiscale Prior Model” IEEE ISBI, 2008. 

 
4. Bo Liu, Leslie Ying and Emad Abdelsalam, “Non-iterative Reconstruction of 

dynamic spiral MRI using temporal model-based method” ISMRM 2007. 
 

5. Leslie Ying, Emad Abdelsalam, “A parallel MRI reconstruction algorithm based 
on a filter-array scheme” ISMRM 2007. 

 
6. B. Liu, L. Ying, Z-P. Liang, D. Xu, E. Abdelsalam and J. Sheng “High-

Resolution Dynamic Imaging with Spiral Scanning and Spatiotemporal 
Modeling”, ISMRM 2007, pp. 3362 

 
7. Abdelsalam E, Ying L and Klemer D, “Parallel MRI Reconstruction: Filter-bank 

Framework and a New Algorithm”, Great Lakes Biomedical Conference, Racine, 
WI, April 2005. 

 
8. Ghorbanpoor, A., Borchelt, R., Edwards, M. and Abdelsalam, E., "Magnetic-

Based NDE of Prestressed and Post-Tensioned Concrete Members - The MFL 
System," Final Report No. FHWA-RD-00-026, Federal Highway Administration, 
U.S. Department of Transportation, May 2000, 107 pages. 

 
9. Emad Abdelsalam, “Design and Implementation of Algorithms Applied in 

Detection of Structural Defects,” M.S. Thesis, Electrical Engineering, University 
of Wisconsin-Milwaukee, August 1998 

 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2013

	System for Detection of Defects in Cables of Bridge Structures
	Emad Ismail Abdel Salam
	Recommended Citation


	Microsoft Word - Ph.D. Thesis-Emad Abdelsalam

